Analysis of Complexity in Arctic Sea Ice And Comparison to CICE Model Results

Ute C. Herzfeld^{1,2,3}, Elizabeth Hunke⁴
Brian McDonald¹, Aris Sheiner², Katherine Schneider^{1,2}

- (1) Department of Electrical, Computer and Energy Engineering
- (2) Cooperative Institute for Research in Environmental Sciences
 - (3) Department of Applied Mathematics University of Colorado Boulder
 - (4) T-3 Fluid Dynamics and Solid Mechanics Group Los Alamos National Laboratory

CESM Polar Working Group Meeting, NCAR, Jan29-31, 2014

Talk dedicated to the memory of John Heinrichs who observed the Arctic Sea Ice and loved to think about its physics and complexity

Thanks to my collaborators and students ...

Geomath Team and former Geomath Team: Aris Sheiner, Jeff Jennings, Katherine Schneider, Phil Chen, Bruce Wallin (now NMTech), Ian Crocker (now NEON), Maciej Stachura, Alex Weltman, Lance Bradbury, Alex Yearsley, Griffin Hale, SeanOGrady, Steve Sucht, Scott Williams (now google)

ICESat and ICESat-2: Waleed Abdalati (CUB), Bea Csatho (U Buffalo NY) and ICESat science team/ ICESat-2 SDT Alexander Marshak, Steve Palm; Thorsten Markus, Tom Neumann and the ICESAt-2 Project, Kelly Brunt, Jay Zwally, John DiMarzio, Anita Brenner, Kristine Barbieri, LeeAnne Roberts (NASA Goddard Space Flight Center)

IceBridge: William Krabill, Serdar Manizade (NASA Goddard Space Flight Center) and collaborators;

CASIE and SeaiceIPY: James Maslanik (CCAR, CU Boulder), Ron Kwok (JPL), John Heinrichs (†, Ft. Hays State Univ, KS), David Long (BYU Provo), Matt Fladeland and SIERRA Team at NASA Ames Research Center

.. and for support through

- ► Los Alamos Institute for Geophysics and Planetary Physics
- ► NASA Cryospheric Sciences
- NSF Arctic Sciences
- NSF Hydrological Sciences
- Deutsche Forschungsgemeinschaft (DFG), Antarctic and Arctic Research Program
- ► University of Colorado UROP Program

Models and Observations

- Comparison between model results and observations
 - → Validation of physical concepts
- History
 - physical understanding of sea-ice processes was ahead of observation technology for decades
 - new remote-sensing technology now yields data which facilitate insight in sea-ice processes ("now" - in the last few years)
- ▶ Bridging the data world and the modeling world is not trivial:
 - requires parameterizations from data that match models
 - scale matching: high-resolution observations models run on relatively low-scale grids
 - spatial coverage and generalization: models cover entire ocean or hemisphere — observation campaigns often localized
 - ▶ time scale: observations happen at a short, specific time frame models cover decades or centuries
- Comparison can lead to
 - either validation of physical concepts
 - or need to include different physical concepts in sea-ice models
 - sometimes different parameterizations in models are sufficient

Topics

- Arctic sea ice coverage continues to decrease
- ► Change from a perennial sea-ice cover to a seasonal sea-ice cover? (ice-free summers in the Arctic)
 - ightarrow Consequences for Arctic ecology and human living, for weather and climate everywhere
- Loss of old ice
- Need to study the more complicated processes and properties of Arctic sea ice:
 - ► Deformation processes
 - ► Ridged ice (and rafted ice)
 - ► Melt-pond formation and localization
 - Relationships and interactions of the above processes
- Results from a collaborative project Parameterization of Ridges and Other Spatial Sea-Ice Properties From Geomathematical Analysis of Recent Observations for Improvement of the Los Alamos Sea Ice Model. CICE

Project Components

- (1) Los Alamos Sea Ice Model, CICE (also: the Sea-Ice Component of CESM)
- (2) Observations from UAS over Fram Strait (CASIE)
- (3) Observations from NASA Operation IceBridge
- (4) Mathematical parameterizations of observations that facilitate data-model comparison

Analysis Outline

- (1) Data section
- (2) How can we measure the area of deformed ice?
- (3) Model Data Comparison
- (4) Definition revisited: What really is deformed ice?
- (5) CASIE Image Analysis
- (6) Melt ponds: Do ponds occur mostly on level ice, or do they occur on ridged ice as well?

(1) Data Section

Survey campaigns and satellite missions

 \rightarrow tiers of observations

SCALE

CASIE Experiment 2009 Fram Strait

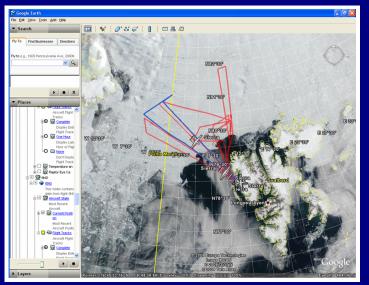
CASIE - Characterization of Arctic Sea Ice Experiment

July/ August 2009 from a base in Nye Alesund, Svalbard

Objective: Collection of high-resolution microtopographic and roughness data

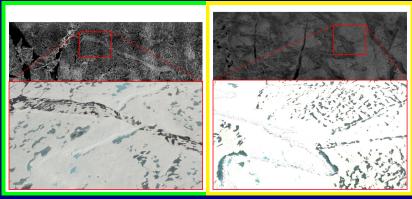
SIERRA UAV, NASA AMES Research Center: Matthew Fladeland and collaborators

Experiment science: Jim Maslanik (P.I.), Ute Herzfeld (Co-I.), David Long (Co-I.), R. Kwok (Co-I.), Ian Crocker, K. Wegrezyn


NASA IPY sea-ice roughness project: J. Maslanik, U. Herzfeld,

J. Heinrichs, D. Long, R. Kwok

NASA AMES SIERRA: Ny Alesund, Svalbard photograph by Ian Crocker



Flight tracks of the CASIE Experiment July/August 2009. Data used here stem from flight 9 (marked blue).

Sea Ice Types — Fram Strait, from CASIE 2009

Sea Ice Types — Fram Strait, from CASIE 2009

(c) refrozen lead

(d) flooded floes - ridging

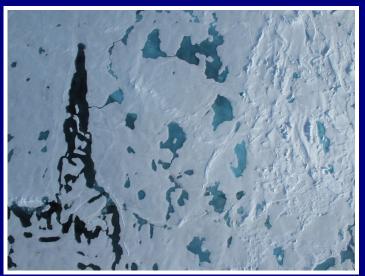
Laser altimeter data, videographic data and microASAR data from CASIE

(2) How can we measure the area of deformed ice?

Objectives of Ice Classification

- (1) Characterization of ice provinces: Establish a unique quantitative description of each ice type
- (2) Classification: Assign a given object to a surface class, using the characterization
- (3) Segmentation: Create a thematic map by applying the classification operator in a moving window

Transfer to Modeling


- (1) Parameterization of spatial sea-ice properties, based on characterization
- (2) Summarize properties of ice types, based on classification
- (3) Simplify regional ice-type distributions for model input at larger/ regional scale, based on segmentation

What is spatial surface roughness?

- a derivative of (micro)topography
 - ightarrow characterization of spatial behavior

Why do we need spatial surface roughness?

- sub-scale information for satellite measurements
- indicator variable for other, harder to observe processes
- parameterization of sub-scale features or processes

CASIE image 20090725-15.36.22-IMG-9080.jpeg

(4.) How do we analyze surface roughness?

The analytically defined spatial derivative needs to be calculated numerically from a data set.

One way to do this:

$$\lim_{x\to x_0}\frac{z(x_0)-z(x)}{x_0-x}$$

surface slope in a given location x_0

To characterize morphology, better use averages...

Definition of Vario Functions

$$V = \{(x, z) \text{ with } x = (x_1, x_2) \in \mathcal{D} \text{ and } z = z(x)\} \subseteq \mathcal{R}^3$$

discrete-surface case or

$$V = \{(x, z) \text{ with } x \in \mathcal{D} \text{ and } z = z(x)\} \subseteq \mathcal{R}^2$$

discrete-profile case

Define the first-order vario function v_1

$$v_1(h) = \frac{1}{2n} \sum_{i=1}^n [z(x_i) - z(x_i + h)]^2$$

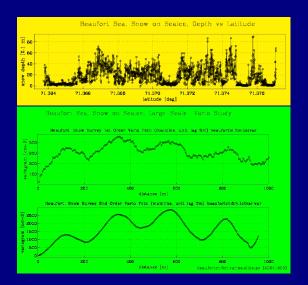
with $(x_i, z(x_i)), (x_i + h, z(x_i + h)) \in \mathcal{D}$ and n the number of pairs separated by h.

Higher-Order Vario Functions

The first-order vario-function set is

$$V_1 = \{(h, v_1(h))\} = \underline{v}(V_0)$$

Then: get V_2 from V_1 in the same way you get V_1 from V_0 . The second-order vario function is also called varvar function.


Recursively, the vario function set of order i + 1 is defined by

$$V_{i+1} = \underline{v}(V_i)$$

for $i \in \mathcal{N}_0$.

Beaufort Sea

Geostatistical Classification Parameters

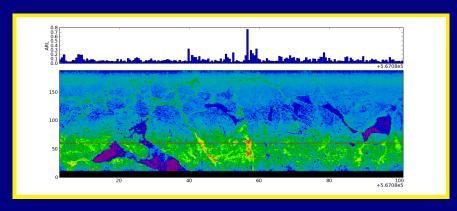
$$p1 = \frac{\gamma_{max_1} - \gamma_{min_1}}{h_{min_1} - h_{max_1}}$$

$$p2 = \frac{\gamma_{max_1} - \gamma_{min_1}}{\gamma_{max_1}}$$

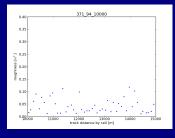
pond – maximum vario value

mindist - distance to first min after first max

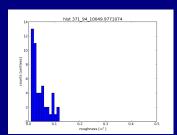
$$avgspac = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} h_{min_i}$$


typically for n=3 or n=4

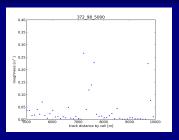
Roughness length approximation:

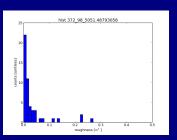

$$arl = \frac{1}{2}\sqrt{2pond}$$

ARL from altimetry and matching microASAR data

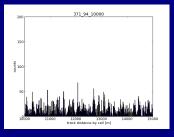


Segment 1 (msar104), Flight 9, 2009-07-25, CASIE 2009

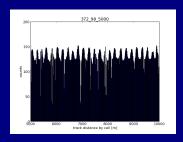

ARL from CASIE Laser Data


(a) typical surface roughness - water

(c) Histogram of surface roughness – water

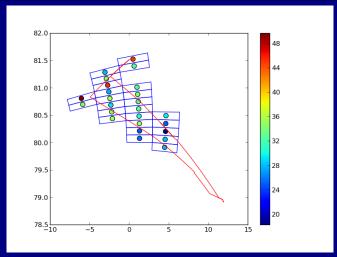


(b) typical surface roughness - sea ice



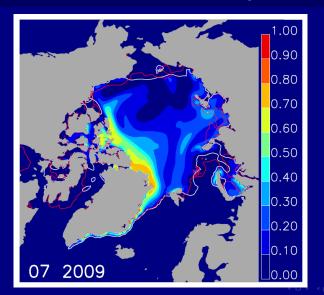
(d) Histogram of surface roughness - sea ice

Laser Returns from CASIE Laser Data



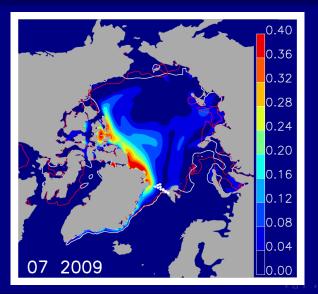
(a) Returns in 10m bins - water

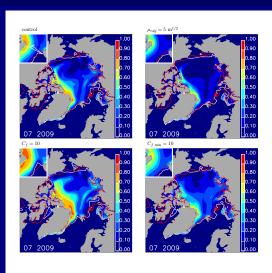
(b) Returns in 10m bins - sea ice


CICE- CASIE Comparison: Percent Deformed Ice Area from ULS ARL

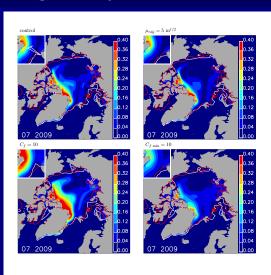
25 CICE grid nodes over sea ice

 (3) Model - Data Comparison


CICE Model Run For CASIE Flight 09 Time Deformed Ice Area Fraction – July 2009


CASIE / CICE Data Comparison				July 2009
CASIE				
arl	pond	% level	% ridged	
0.1118	0.025	69.0	31.0	
0.1000	0.020	64.1	35.9	
0.0866	0.015	57.3	42.7	
0.0707	0.010	47.7	52.3	
0.0500	0.005	29.2	70.8	
CICE				
control	control		38.2	
	$C_{f} = 10$		64.0	
$\mu_{rdg} =$	$\mu_{rdg} = 5$		21.3	

used $pond = 0.01m^2$, based on ULS data analysis


CICE Model Run For CASIE Flight 09 Time Sail Height – July 2009

CICE Sensitivity Study Ridged Ice – July 2009

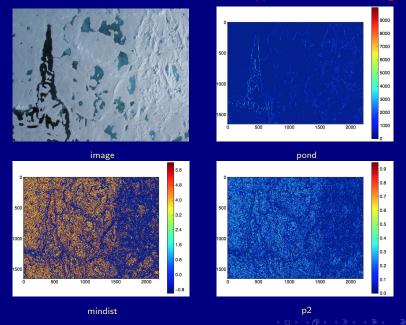
CICE Sensitivity Study Sail Height – July 2009

Deformed Ice Dependent on CICE Model Parameters

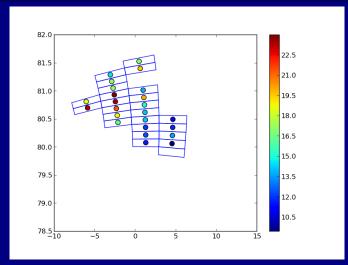
Parameter	Northern Hem.	Casie Mask (35 Nodes)
orginal	31.1634	38.1931
astar.03	32.4175	45.5128
astar.07	30.9051	39.2194
maxraft.17	33.0950	41.8181
maxraft2	30.7335	37.6406
murdg4	24.6877	27.6685
murdg5	20.2645	21.2877
Cf10	41.5542	63.9714
Cs.5	36.6809	50.2486

Definition revisited

What do we actually call "deformed sea ice"?


CASIE image 1-20090725-10-33-55-IMG-4580-R.jpg

(5) CASIE Image Analysis - Ridged Ice


Approach for measuring deformed sea ice areas from imagery

- ► Use high-resolution CASIE imagery
- Geo-reference all images individually using GPS data
- Define a pond-filter that identifies ridge areas
- ► Apply this to images in all grid cells

Geostatistical Classification Parameters Applied To Sea-Ice Image

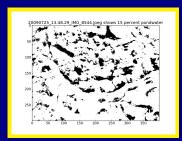
CICE - CASIE Comparison: Percent Deformed Ice Area from Image Analysis

25 CICE grid nodes over sea ice

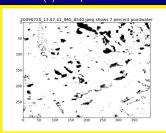
Deformed Ice from CASIE Images (pond)

Latitude	Longitude	% Ridged Ice
80.06551361	4.50762939	9.46214414035
80.08296967	1.27127075	11.6643353086
80.21040344	4.5546875	13.6099826824
80.2192688	1.26473999	12.3897421788
80.35453033	4.58929443	11.8910531342
80.35469818	1.24539185	12.0757602732
80.44387054	-2.15808105	16.299423827
80.48925018	1.21295166	14.1650751776
80.49788666	4.6111145	10.9840662275
80.56816101	-2.25061035	18.5388512147
80.62290192	1.16702271	14.1661271789
80.69143677	-2.35668945	21.4184618124
80.70297241	-5.90551758	23.4446026942
80.75563049	1.10736084	15.0469354395
80.81368256	-2.47665405	23.4854014599
80.81427002	-6.0753479	18.4906210044
80.88742828	1.03353882	19.9097706637
80.93487549	-2.61074829	23.9840593802
81.01826477	0.94525146	13.8140709211
81.05499268	-2.75927734	17.2569472543
81.17401123	-2.92260742	17.0840548983
81.29190826	-3.1010437	14.5342062246
81.40483093	0.58953857	19.6372618836
81.53162384	0.43930054	16.6952595206

⁻ from 25 nodes (ice-covered regions only)


⁻ threshold for classification: 60 < pond < 200 to determine ridged ice areas:

(6) Melt ponds: Do ponds occur mostly on level ice, or do they occur on ridged ice as well?

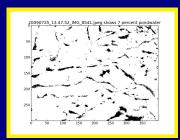

Melt pond identification from imagery

- ▶ Use RGB still imagery (from CASIE flight 9, 2009-07-25)
- ► Resample image to 300 by 400 (from computational speed)
- ▶ Define melt-pond-mask: If the following three criteria hold for x, then x is in the melt-pond mask.
 - ▶ blue-value > 95
 - ▶ green-value > 20
 - ► red-value < 80
- Improvement: Use histograms and automated identification of hyper-maxima

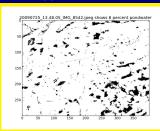
Melt-Pond Identification — Fram Strait, from CASIE 2009

(a) melt-pond area

(c) melt-pond area



(b) Image 20090725_13.48.29_IMG_8544.jpeg



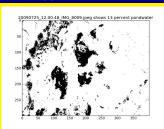
(d) Image 20090725_13.47.41_IMG_8540.jpeg

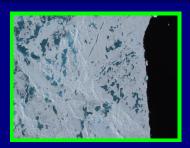
Melt-Pond Identification — Fram Strait, from CASIE 2009

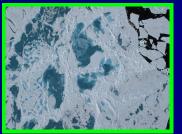
(a) melt-pond area

(c) melt-pond area

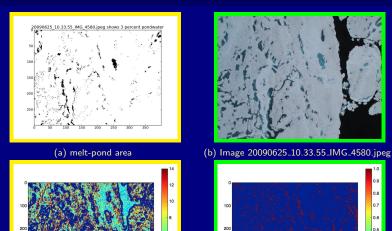
(b) Image 20090725_13.47.52_IMG_8541.jpeg


(d) Image 20090725_13.48.05_IMG_8542.jpeg


Melt-Pond Identification — Fram Strait, from CASIE 2009


(a) melt-pond area

(c) melt-pond area



(b) Image 20090725_12.00.36_IMG_8008.jpeg

(d) Image 20090725_12.00.48_IMG_8009.jpeg

Melt Ponds and Ridges

(c) mindist

(d) ridges (red) □ 60 < pond < 200 < = > _ = > < <

What's next?

- compare definitions of deformed ice areas:
 - ► from imagery and ARL
 - as used in CICE, dependent on parameters
- more test areas
- ► MABEL data analysis
- OIB data analysis

NASA Operation Ice Bridge — Flight Tracks

