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heterogeneous chemistry module

Updated het chemistry changes partitioning of condensed-phase HNO, between Nitric Acid
Tri-hydrate (NAT) and Supercooled Ternary Solution (STS) [see Wegner et al., JGR, 2013.]

old scheme

nhew scheme

motivation: implementation of new
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* Updated het chemistry decreases the amount of irreversible denitrification by decreasing NAT and increasing STS
* Less denitrification allows reformation of CIONO, in Spring =» continued heterogeneous halogen activation

* Heterogeneous rate for halogen activation on STS is very T-dependent (the colder, the faster)

* Both these factors require a more accurate representation of model winter/spring LS polar temperatures




which leads to a problem
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 model with old chemistry (red, blue) was reasonably consistent with observations
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 model with new chemistry (green) produces unrealistically low ozone column
because new het chemistry module is very sensitive the cold T



the ultimate cause of the problem

<T> (80°S) seasonal climatology 1975-2005
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a possible solution

polar temperatures are sensitive to wave-induced downwelling via adiabatic
warming; this suggests that wave forcing is too weak in the SH

resolved wave amplitudes and dissipation are not easily adjustable

parameterized gravity wave forcing is adjustable, but “tuning” the parameterization
to make GW break in the stratosphere degrades the simulation in the mesosphere

parameterized GW in WACCM4 are “mesoscale” (L, = 100 km); however, any physical
source should excite a (“red”) spectrum in wavenumber

=» add a second spectrum of waves, with L, ~ 1000 km (typical of the inertia-gravity
range, IGW) to represent the effects of longer waves

the longer IGW will have larger source amplitudes that can break in the stratosphere
for reasonable values of the source stress
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consider GW excitation by a “front”,
idealized here as a Gaussian obstacle
of width L: w’ =<U> dh’/dx and,
therefore, |u’| =m <U> |h’|

produces a Gaussian “red” spectrum in
wavenumber (shown here as a function
of horizontal wavelength); spectral
amplitude |u’| falls of rapidly at small
wavelenghts (large wavenumber, k)

the fall-off of spectral amplitude with
decreasing wavelength means that
longer waves tend to have larger source
stress, T = p (k/m)|u’|?, than mesoscale
waves =» they break at lower altitude



<T> (80°S) with additional IGW spectrum

<T> (80°S) climatology 1975-2005
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Total Column Ozone (DU)

Total Column Ozone (DU)

ozone column in WACCM4 IGW
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“REFC2”: WACCM4 IGW, free-running

“REFC1SD”: WACM4 constrained with MERRA dynamics

including IGW “solves” the low ozone problem

(except in December, because final vortex breakdown is still too late)



but what about T in NH winter?

refb1.4 annual climatology of T at 80.5: 1975-2005 refc2.002 annual climatology of T at 80.5: 1975-2005

€407 T € 40F
X X
. . WACCM4 std. - " WACCM4 IGW
o 3C o o 30
> . o 3
£ P/ < £
© E ©
o 20 g o 20
5 3 100 o 5
- i 2
v 10E 5 a o 10
Q. A Z 2 Q.
| 24 = 4 | EPe——————
Fe 25750 1000 2o . e 1000
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
time time
refc1sd.001 annual climatology of T at 80.5: 1975-2005 rechsd 001 annual climatology of T at 80.5: 1975-2005
£°F MERRA RaN—— \_/ / ' ' £ aN— \/ / ' '
>}
° 30 > 05 o
3 E > a 3
= 3 £
© ©
o 20 g o
5 100 o 5
7 3 0
g 10 & g
Q. Q.
| |
g 0 1000 g
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
time time
rebe 4—refc1sd.001 T difference at 80.5: 1975-2005 refc2.002—-refc1sd.001 T difference at 80.5: 1975— 2005
£ 7 £ ¥ i
= =
[} —~ [}
o O o
3 a 3
= £ £
G o i
o > o
2 2 2
&
Q. Q.
& : & ¢ o i
o S LAp . = o s
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

time time
shaded: not sigificant at 95% shaded: not sigificant at 95%

differences in <T> (80°N) with respect to MERRA are small in both WACCM4 std. and
WACCM4 IGW, although the latter is slightly warmer
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similarly for the mean zonal wind at 60°N
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small differences overall, all of which suggests small impact of IGW in the NH. However...



SSW statistics: WACCM4 std. and IGW
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e WACCM4 IGW produces too many SSW late in the season (especially March)
e statistics are for a 3-member ensemble, so unlikely to arise by chance



a closer look at seasonal climatology:
<U> (10 hPa, 60°N)
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U(10 hPa, 60°S) is stronger in MERRA than in either WACCM4 run in midwinter

U(10 hPa, 60°S) is somehwat stronger overall in WACCM4 std. than in WACCM4 IGW and
is noticeably stronger in NH spring (but actually closer to MERRA)



conclusions

the addition of a second spectrum of parameterized gravity
waves, in the IGW range, is physically resonable

it ameliorates the SH cold-pole problem problem sufficiently
to allow realistic simulation of Antarctic ozone with the
updated heterogeneous chemistry module

it produces relatively minor changes in <U> and <T> in the NH
compared to the standard version of WACCM4

it agrees with MERRA data for the NH at least as well as the
standard version

however, it produces too many late-season SSW—this aspect
of the simulation needs further study
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