Preliminary Evaluation of Gravity Wave Forcing in WACCM-SE NE120

Han-Li Liu¹, Joe McInerney¹, Sean Santos² Peter Lauritzen², Mark Taylor³, Nick Pedatella⁴ 1. NCAR/HAO, 2. NCAR/CGD, 3. DOE/SNL, 4. UCAR/COSMIC

Motivation

- Gravity wave forcing plays a dominant role in driving MLT circulation, as well as stratosphere QBO.
 - Represented currently by GW parameterization.
 - Source of uncertainties/biases.
- Gravity wave perturbations may directly impact ionospheric variability, including ionospheric irregularities.

GWF: (1) A major driver of MLT dynamics; (2) A major source of uncertainty in MLT.

Pedatella et al. (2014)

WACCM-SE Model Setup

- WACCM-SE with specified chemistry.
- NE120 (~0.25deg) horizontal resolution.
- 0.1 scale height 40-5.9x10⁻⁶hPa, 0.06-0.016 scale height below: 209 Levels.
- Sponge layer (top 3 scale heights):
 - Horizontal diffusion (second order): effective for smaller scale waves.
 - Rayleigh friction: effective for larger scale waves.
- Transition from RRTMG to WACCM RT set to 0.04hPa (default at 0.0001hPa, though known limit of RRTMG is 0.009hPa)

WACCM-SE Model Simulation

- Aggressive damping needs to be applied for spin-up to keep model stable (e.g.: divergence damping, sponge layer thickness).
- Scale back damping once "wave surge" passes out of computing domain.
- With 900s model time step, remapping subcycling (se_nsplit) set to 60 or larger.
 - Larger than recommended value for WACCM (20).
 - Probably because large vertical motion and/or large vertical phase speed of GWs, and high vertical resolution.

Table 2: Recommended namelist settings for the floating Lagrangian vertical coordinate version of CAM-SE based on $tstep_type = 5$ (RK5), qsplit = 1, $hypervis_subcycle = 4$ (maybe 3 is stable at ne30 - 8% change in computational cost; it is not stable for ne120) ($hypervis_subcycle = 1$), and ftype = 0 for CAM (red) and WACCM (blue).

$\operatorname{resolution}$	dtime	se_nsplit	rsplit	$hypervis_{-}$	$\Delta t_{remap}[s]$	$\Delta t_{tracer}[s]$	$\Delta t_{hypervis}[s]$	$\nu [{ m m}^4/{ m s}]$
				subcycle		$= \Delta t_{dyn}[\mathbf{s}]$		
$ne11np4^{a}$	1800 (1800)	1(5)	2(2)	3 (1)	1800(360)	900 (180)	300(180)	$2.0 \times 10^{16} \ (2.0 \times 10^{16})$
$ne16np4^{b}$	1800(1800)	1(5)	3 (3)	3 (1)	1800(360)	600(120)	200(120)	$7.0 \times 10^{15} \ (7.0 \times 10^{15})$
ne30np4	1800 (1800)	2(10)	3 (3)	3 (1)	900(180)	300 (60)	100(60)	$1.0 \times 10^{15} (1.0 \times 10^{15})$
ne60np4	1800 (1800)	4 (20)	3 (3)	4 (1)	450 (90)	150(30)	37.5(30)	$1.0 \times 10^{14} (1.0 \times 10^{14})$
$ne120np4^{c}$	900 (900)	4 (20)	3 (3)	4 (1)	225~(45)	75~(15)	18.75(15)	$1.0 \times 10^{13} (1.0 \times 10^{13})$
ne240np4	600^d (600)	5(25)	3 (3)	4 (1)	120(24)	40(8)	10(8)	$1.1 \times 10^{12} (1.1 \times 10^{12})$

^auntested

^buntested

 $^{c}\mathrm{if}$ winds are maximum 600 m/s; for CAM it is 120 m/s

^{*d*}900 works, however, gravity wave noise!

Model Performance

• Scaling with number of processors on Yellowstone: Scaling of SC-WACCM-SE NE120 on Yellowstone

- 20k Core hours for each model day, or 7.3M core hours for each model year (at 4500 cores).
- Were able to run a total of 1.5 month (including spin-up) with our allocation.

Dynamically Active MLT

Zonal Wind and GW Forcing

Mean Temperature

Wave Forcing in Equatorial Stratosphere

Wave forcing in Stratosphere: Mid to High Latitude

Eddy Viscosity

Migrating Tides

Summary and Future Works

- WACCM-SE NE120 feasible.
- Resolved GW forcing is not large enough to reverse the winter stratospheric/mesospheric jet.
- Resolved GW forcing can reverse summer stratospheric/mesospheric jet, but still weak. The reversed jet strength and summer mesopause temperature is ~20K too warm.
- Mesopause temperature at mid-latitudes and winter high latitudes agree better with observations.
- Migrating tides stronger and show the correct hemispheric structure in MLT.
- Need to evaluate the "missing waves" and/or "missing forcing" for better parameterization.
- Implementing horizontal eddy/molecular diffusion.
- Make longer runs—NSC proposal to get more time.

WACCM/WACCM-X Development

WACCM/WACCM-X Developments

- WACCM-X lonosphere modules:
 - Vertical plasma transport, including ambipolar diffusion.
 - Time-dependent electron/ion temperatures.
- WACCM-X/Ionosphere-Plasmasphere/Electric Dynamo coupling.
- Data Assimilation using WACCM-DART.

WACCM-X Ionosphere Modules: Column Model Test

- Ambipolar diffusion: Similar to TIME-GCM, but currently only in vertical direction.
- Time-dependent Te/Ti solver.
- Horizontal components of O+ transport.

Column Model: Use TGCM Background, including Ne, but WACCM-X ionization rates, and new time-dependent solver for Te.

WACCM-X Ionosphere Modules : Full Model Test

WACCM-X/Ionosphere-Plasmasphere/Electric Dynamo Coupling

- Two-way coupling of an Ionosphere-Plasmasphere model (TIME3D) and Edynamo, with neutral wind read in from WACCM-X output.
- TIME3D/Edynamo recently converted into a module.
- Building WACCM-X interface with this new module.

Data Assimilation using WACCM-DART

- Effort led by Nick Pedatella, in collaboration with Kevin Raeder and Jeff Anderson.
- Assimilates both lower atmosphere data and upper atmosphere observations (SABER and MLS Temperature).

Pedatella et al, submitted