A new and improved coherent, prescribed parameterization of stratospheric aerosol for all flavors of CESM

Ryan R. Neely III, Post-Doctoral Fellow, NCAR's ASP and ACD

With J.F. Lamarque, A. Conley, F. Vitt, D. Kinnison, D. Marsh, M. Mills and S. Tilmes.

and thanks to L. Thomason, J.P. Vernier, B. Luo, F. Arfeuille and T. Peter

イイイイイイ

Motivation

CMIP5 Global Annual Mean Surface Temperature Anomaly

Motivation: Bad and Ugly Volcanoes

Cerro Hudson Agung **El Chicon** St. Helens Pinatubo **Bezymianny** 0.8 Anomaly (referenced to 1961-1990,^oC) 11 0.6 0.4 0.2 0 HadCRUT4 **GISTEMP** NCDC Volcanic ·0.2 **Eruptions** -0.4 11 11 11 -0,6 1950 1960 1970 1980 2000 1990 2005 Year

CMIP5 Global Annual Mean Surface Temperature Anomaly

Motivation: "The Hiatus"

Motivation: Why are there Discrepancies?

Agung Cerro Hudson **El Chicon** Pinatubo St. Helens **Bezymianny** 0.8 Anomaly (referenced to 1961-1990,^oC) 0.6 0.4 0.2 0 HadCRUT4 **GISTEMP** NCDC Volcanic ·0.2 **Eruptions** -0.4 11 11 11 -0.6 1950 1960 1970 1980 1990 2000 2005 Year

CMIP5 Global Annual Mean Surface Temperature Anomaly

Motivation: Why are there Discrepancies?

Motivation: Why are there Discrepancies?

Motivation: Why are there Discrepancies?

Overview of Stratospheric Aerosols

Problems with Stratospheric AOD Forcing

Problems with Stratospheric AOD Forcing

What are the best constraints for volcanic aerosol forcing? How can we make a better forcing file?

A New Dataset for CCMI for 1960-2013

1979-2005

1960-1978

Orbit

SAGE I, SAM II, SAGE II

Photometer

Ground photometers: Optical depths at 550 nm. (1) SAGE I: 1979-1980, extinction coefficients at 1020 nm

(2) SAM II: 1981-1984, extinction coefficients at 1020 nm

(3) SAGE II: 1984-2005, extinction coefficients at 1020, 525, 452 and 386 nm.

Chemistry-Climate Model Initiative (CCMI, http://www.igacproject.org/CCMI)

For more details see: Arfeuille, F., and B.-P. Luo (2013), Uncertainties in modeling the stratospheric warming following Mt. Pinatubo eruption, ACP

2006-2011

CALIOP

CALIOP: Backscatter and extinction coefficients at 532 nm.

A New Dataset for CCMI: Strat. AOD

AOD 15-35 km 50°N-50°S

A New Dataset for CCMI: Strat. AOD

A New Dataset for CCMI: Strat. AOD

AOD 15-35 km 50°N-50°S

A New Dataset for CCMI: SAD

Courtesy of Arfeuille, F., and B.-P. Luo (2013, CCMI Meeting)

Implementation in CESM(All Flavors)

- New mass, radius and SAD inputs based on CCMI reanalysis
- Improved optical lookup tables for CAMRT and RRTMG
- Coherent treatment of input for radiation and chemistry parameterizations
- Test Setup:
 - Focus on Pinatubo (June, 1991)
 - Ensemble of 5 each for the

Old, New, and Background

Mt. Pinatubo, June 12, 1991, USGS

Changes in Stratospheric AOD

New/CCMI

Old/CCSM4

CAM4: Old Volcanoes – Background, AEROD,

80 0.25 60 40 0.2 20 0.15 0 -20 0.1 -40 0.05 -60 -80 AOD 1994 1996 1997 1990 1991 1992 1993 1995 1998 Year

Changes in MLO Stratospheric AOD

Mauna Loa (19.5N) AOD Comparison 0.2 -MLO PFR AOD — Ammann et al. (2003) 0.18 -Sato et al. (1993) CAM4 with CCMI 0.16 0.14 Visible AOD 0.12 0.03 0.08 0.06 0.04 0.02 1992 1993 1994 1990 1991 1995 1996 1997 1998 Year

Implementation in CESM(All Flavors)

Upper Atmosphere Warming

Changes in Stratospheric Heating

Conclusion

A New Parameterization of Stratospheric Aerosol has been implemented in CESM

Tested in WACCM, CAM4, CAM5, CCMI and CCSM4

Method has also been applied to creations of Paleo and GeoMIP scenarios

Next Steps...What about Prior 1960?

CMIP5 Global Annual Mean Surface Temperature Anomaly

 \rightarrow

 $-\bigcirc$

What about Prognostics Stratospheric Aerosols?

CMIP5 Global Annual Mean Surface Temperature Anomaly

-

Questions?

The Role of Moderate Volcanoes and the 'Hiatus'

Adapted from Solomon et al. (2011), The Persistently Variable "Background" Stratospheric Aerosol Layer and Global Climate Change, Science.

Impacts on global temperature

Temperature Change

28

Ignoring the moderate volcanoes from 2000 to 2010 may lead to an underestimate of global temperature of ~0.1°C in 2010

Remaining Questions: Why is the Response so Variable?

Changes in Stratospheric AOD

Where is the Change in AOD Coming From?

AOD

CAM4: Old Volcanoes – Background, AEROD,

CAM4: New Volcanoes – Old Volcanoes, AEROD,

FLNTC

FSNSC

FSNTC

Tropical T (20S-20N)

Old, New, Background, None, New Mass Old Optics, Old Mass with New Optics, GISS

Global Annual Mean TREFHT

Scale

Volcanic Eruptions from 2000 to 2010

Maximum Observed Injection Height and Total Column SO₂

Circles represent relative amount of sulfur emitted.