A SPECTRAL VERTICAL REPRESENTATION IN CAM-SE

David M. Hall

Department of Computer Science University of Colorado at Boulder

CESM Atmospheric Working Group Meeting 2015, Boulder, CO

NEW TECHNOLOGIES IN HOMME

- Main thrust of project is nonhydrostatic model in η (hybrid-pressure)
- Enabling technologies: Multi-model framework, DCMIP, alternate vertical rep

NEW TECHNOLOGIES IN HOMME

- Focus today: alternative vertical representations
- (Nonhydrostatic update at the end)

Facilitates new models, EOMs

Dycore testing and intercomparison

Multiple new models using these technologies

AMWG 2014: PROPOSED INCREASE IN VERTICAL RESOLUTION

- Currently 30 vertical levels in CAM
- Upgrade to 60 levels?
 - Increases accuracy
 - Increases detail
 - Doubles cost of all simulations

• Alt: Replace it with spectral representation?

- Increases vertical accuracy
- No additional communication costs
- No additional memory demands
- Makes optimal use of vertical DOFs

MANY POSSIBLE VERTICAL DISCRETIZATIONS

- 30 levels, 2nd order finite differences
- 60 levels, 2nd order finite differences (2x cost)
- 3 spectral elements, 10th order (1x cost)
- 1 spectral element, 30th order (1x cost)

SPECTRAL TRANSPORT AND DYNAMICS

- Both transport and dynamics models developed using vertical-spectral routines
- Will show some **DCMIP test results** to evaluate their performance

- Prescribed tracer transport, Hadley-like flow
- Examines impact of vertical representation on tracer transport routines
- No limiters, filters, or hyperviscosity

- Prescribed tracer transport, Hadley-like flow
- Examines impact of vertical representation on tracer transport routines
- No limiters, filters, or hyperviscosity

- Prescribed tracer transport, Hadley-like flow
- Examines impact of vertical representation on tracer transport routines
- No limiters, filters, or hyperviscosity

- Prescribed tracer transport, Hadley-like flow
- Examines impact of vertical representation on tracer transport routines
- No limiters, filters, or hyperviscosity

- Prescribed tracer transport, Hadley-like flow
- Examines impact of vertical representation on tracer transport routines
- No limiters, filters, or hyperviscosity

- Prescribed tracer transport, Hadley-like flow
- Examines impact of vertical representation on tracer transport routines
- No limiters, filters, or hyperviscosity

- Prescribed tracer transport, Hadley-like flow
- Examines impact of vertical representation on tracer transport routines
- No limiters, filters, or hyperviscosity (2°, 1°)

DCMIP 1-2: HADLEY-LIKE TRANSPORT, 2°

Vertical Cross-Sections at 12 and 24 hours

DCMIP 1-2 2 dg x L30 t = 12 hr DCMIP 1-2 2 dg x L30 t = 24 hr 10.0 10.0 height (km) height (km) 6.0 700 700 default method 4.0 2.0 2.0 60S 30N 60N 60S 30S 30N 60N 30S 0 0 latitude latitude 0.9 0.9 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0 0.4 1 0.4 1 2 dg x L30 DCMIP 1-2 t = 12 hr DCMIP 1-2 2 dg x L30 t = 24 hr 12 12 10 10 height (km) height (km) ⁶ ⁹ ⁸ spectral vertical 4 2 2 0 -0 60N 60S 60N 60S 30S 0 30N 30S 30N 0 latitude latitude 0.1 0.2 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.2 0.3 0 0.3 0.4 0.6 1 0 0.1 0.4 0.6 0.9 1

dt=5 sec, no limiter, no hyperviscosity

DCMIP 1-2: HADLEY-LIKE TRANSPORT

dt=5 sec, no limiter, no hyperviscosity

DCMIP 1-2: HADLEY-LIKE TRANSPORT

dt=5 sec, no limiter, no hyperviscosity

•L1, L2 error computed by comparing initial and final states

• Vertical SP more accurate at all resolutions

DCMIP 1-2 Error vs Vertical Resolution at 2dg

total error = sum(vertical, temporal, horizontal, other err)
vertical err is reduced with greater L

• spectral vertical is converged L<15 (smaller than other error sources)

- •default converged at L>60
- asymptotic approach to vertical SP result

•At default resolution, there is a large difference in vertical accuracy

• Qualitatively the same relationship

- Horizontal error is greatly reduced
- Vertical error stays about the same

- Vertical SP is more accurate. What about its **computational cost**?
- Extract prim_run walltotal: isolates tracer and dynamic run time

•Vertical SP is more accurate. What about its **computational cost**?

• Extract prim_run walltotal: isolates tracer and dynamic run time

timing: default method

name	processes	threads	count	walltotal	wallmax	wallmin
prim_run	256	256	4.423680e+06	1.073763e+04	42.070	41.068
prim_advance_exp	256	256	4.423680e+06	3.870625e+03	18.405	14.196
<pre>prim_advec_tracers_remap_rk2</pre>	256	256	4.423680e+06	3.936514e+03	17.003	10.629
vertical_remap	256	256	4.423680e+06	2.311321e+03	10.434	8.373
remap1	256	256	2.332800e+07	2.284787e+03	10.316	8.274

• Vertical SP is more accurate. What about its **computational cost**?

• Extract prim_run walltotal: isolates tracer and dynamic run time

timing: default method

name	processes	threads	count	walltotal	wallmax	wallmin
prim_run	256	256	4.423680e+06	1.073763e+04	42.070	41.068
prim_advance_exp	256	256	4.423680e+06	3.870625e+03	18.405	14.196
<pre>prim_advec_tracers_remap_rk2</pre>	256	256	4.423680e+06	3.936514e+03	17.003	10.629
vertical_remap	256	256	4.423680e+06	2.311321e+03	10.434	8.373
remap1	256	256	2.332800e+07	2.284787e+03	10.316	8.274

timing: spectral vertical

name	processes	threads	count	walltotal	wallmax	<u>wallmin</u>
prim_run	256	256	4.423680e+06	9.929189e+03	38.918	37.569
prim_advance_exp	256	256	4.423680e+06	3.787254e+03	17.252	13.911

• Vertical SP is more accurate. What about its **computational cost**?

• Extract prim_run walltotal: isolates tracer and dynamic run time

timing: default method

name	processes	threads	count	walltotal	wallmax	wallmin
prim_run	256	256	4.423680e+06	1.073763e+04	42.070	41.068
prim_advance_exp	256	256	4.423680e+06	3.870625e+03	18.405	14.196
<pre>prim_advec_tracers_remap_rk2</pre>	256	256	4.423680e+06	3.936514e+03	17.003	10.629
vertical_remap	256	256	4.423680e+06	2.311321e+03	10.434	8.373
remap1	256	256	2.332800e+07	2.284787e+03	10.316	8.274

timing: spectral vertical

name	processes	threads	count	walltotal	wallmax	<u>wallmin</u>
prim_run	256	256	4.423680e+06	9.929189e+03	38.918	37.569
prim_advance_exp	256	256	4.423680e+06	3.787254e+03	17.252	13.911

9929 s / 10737 s = **0.92**

VERTICAL-SPECTRAL TRACER TRANSPORT IS 8% FASTER AT L=30

DOE XSEDE Stampede supercomputer, 256 cores

DCMIP1-2: PERFORMANCE VS VERTICAL RESOLUTION

- Look at wallclock time vs L
- •Near optimal scaling for both, all data on one node

DOE XSEDE Stampede supercomputer, 256 cores

DCMIP1-2: WALL-CLOCK TIME AT 2°

•SP is a bit slower at L=60, but here one would choose vertical spectral elements

DCMIP 1-2: Total Wall-Clock Time vs Vertical Resolution at 2dg

DOE XSEDE Stampede supercomputer, 256 cores

- Thin cloud tracer transport over Schär-type mountain range
- Tests impact of terrain following coordinates: numerical mixing, induced flux

- Thin cloud tracer transport over Schär-type mountain range
- Tests impact of terrain following coordinates: numerical mixing

- Thin cloud tracer transport over Schär-type mountain range
- Tests impact of terrain following coordinates: numerical mixing

- Thin cloud tracer transport over Schär-type mountain range
- Tests impact of terrain following coordinates: numerical mixing

DCMIP 1-3: HORIZONTAL THIN CLOUD TRANSPORT

- Development of a baroclinic instability over 30 days
- Tests **primitive equation** dynamics (not just tracer transport)
- Horizontal cross-sections shown here

- Development of a baroclinic instability over 30 days
- Tests primitive equation dynamics (not just tracer transport)
- Horizontal cross-sections shown here

- Development of a baroclinic instability over 30 days
- Tests primitive equation dynamics (not just tracer transport)
- Horizontal cross-sections shown here

- Development of a baroclinic instability over 30 days
- Tests primitive equation dynamics (not just tracer transport)
- Horizontal cross-sections shown here

- Development of a baroclinic instability over 30 days
- Tests primitive equation dynamics (not just tracer transport)
- Horizontal cross-sections shown here

- Development of a baroclinic instability over 30 days
- Tests primitive equation dynamics (not just tracer transport)
- Horizontal cross-sections shown here

Temperature, day 28.0, PE X=1000

•Vertical resolution impacts horizontal solution quality

default method

spectral vertical

spectral vertical

default method

spectral vertical

default method

60E

0

120E

180

120W

230

60W

240

250

60E

280

270

0

260

120E

290

180

300

120W

60W

default method

spectral vertical

NONHYDROSTATIC MODEL IN PRESSURE COORDS

- Critical for horizontal resolutions finer than 10 km/cell
- Employs same spectral-vertical representation
- Works very well for orography-free simulations
- Orographic boundary conditions require further testing

•Nonhydrostatic model results differ significantly from primitive equation results

DCMIP 3-1: COMPARISON WITH ICON NH MODEL

• Matches other nonhydrostatic models (it's working correctly)

IMPORTANT WORK REMAINS TO BE DONE:

- Deliver capabilities to CAM trunk
- Complete nonhydrostatic orographic boundary condition testing
- Evaluate both on Aqua-planet, AMIP

PROBLEM: FUNDING

- Funding for this project has run out.
- Ideally, I am seeking additional funding to finish / deliver new capabilities
- Alternatively: Anyone need a skilled climate-model developer?

LA TOUR EIFFEL

L'avancement des travaux 1888 - 1889

SUMMARY

• NEW SPECTRAL-VERTICAL REPRESENTATION

- SIGNIFICANTLY IMPROVES ACCURACY IN CAM-SE WITHOUT INCREASING THE COMPUTATIONAL COST
- OBSERVED IMPROVEMENTS:
 - DCMIP 1-2: REDUCED OVERSHOOTING, REDUCED GAPPING
 - DCMIP 1-3: REDUCED NUMERICAL DIFFUSION
 - DCMIP 4-1: GREATER DETAIL, SMOOTHER CONTOURS, REDUCED NUMERICAL ERROR
- A PLAUSIBLE ALTERNATIVE TO DOUBLING VERTICAL RESOLUTION

This work was supported by a SciDac grant from the Department of Energy