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Introduction 

• Our atmosphere contains numerous dynamical systems, such 
as tropical cyclones, extratropical cyclones, frontal systems, 
jets, teleconnection patterns, etc.  

• The growth and decay of these systems are strongly 
influenced by the atmospheric dynamical and 
thermodynamical conditions such as atmospheric 
disturbances, sea surface temperature, atmospheric stability, 
relative humidity, etc.  

• It has long been of interest to study how various atmospheric 
conditions affect the evolution of the dynamical systems and 
how the characteristics of the dynamics systems involves with 
each other.  

• Tropical cyclone (TC) is one such example.  
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  Tropical Cyclone  
       Evolution  

• Size  
• Vertical extent 
• Storm track 
• Intensity  
• Surface pressure 
• Precipitation  
• Cloud distributions  
• Cloud water content  
• Etc.   
  
 

• Initial disturbance  
• Sea surface temperature  
• Background vertical lapse rate 
• Environmental humidity  
• Vertical wind shear  
• Background translational flow 
• Etc.  

    

Initial Conditions (Parameters) Characteristics  

Scientific Interests: During the evolution of tropical cyclones,  
Q1: How the initial conditions affect the TC characteristics? E.g. how the sea surface temperature 
affects the TC size, which determines its destructiveness.  
 
Q2: How the interactions among initial conditions affect the TC characteristics? E.g. the 
interaction of vertical wind shear and sea surface temperature on TC intensity.  
 
Q3: How the TC characteristics involves with each other? E.g. wind-pressure, intensity-
precipitation, intensity-size, etc.  



Introduction 

Numerical models are the main tools to study such problems: y=f(x).   

• y1: Size  
• y2: Vertical extent  
• y3: Storm track 
• y4: Intensity  
• y5: Surface pressure 
• y6: Precipitation  
• y7: Cloud distributions  
• y8: Cloud water content  
• . 
• . 
• . 
• ym: etc.    
  
 

Model (f)  Model Initial (x) Model Output (y) 

• x1: Initial disturbance  
• x2: Sea surface temperature  
• x3: Background vertical lapse rate 
• x4: Environmental humidity  
• x5: Vertical wind shear  
• x6: Background translational flow 
• . 
• . 
• . 
• xn : etc.  

    

  Tropical Cyclone 
       Evolution  

Essentially, two types of relationships: 
 Input-Output relationships (IO) 
 Output-Output relationships (OO) 

* The input parameters x vary over a range of interest.  



Latin Hypercube Sampling 

How to design the simulations? 
• 1. Change one-factor-at-a-time while other parameters at a constant value. 
        Only examine the relationships from one dimension  
        Cannot examine the impact of interaction among initial parameters on targeted 
dynamical 
        systems.   
• 2. Change parameters simultaneously over range of interest with full coverage.  
      Quite computationally expensive, especially for models that require intensive computing resources.  
          

An alternative solution:  
Latin Hypercube Sampling (LHS) 

How to get the values marked by red star? 
Statistical emulator: a type of regression 
tool 



Schematic Summary 

Input-output relationships 
Output-output relationships 

Latin Hypercube Sampling + 
Statistical Emulator   

Apply on 

Numerical models of an individual 
dynamical system  

Figure out 

Interpret 

Evolution of the dynamical 
systems 



 
 

 
 
                                  

 
 
Example？ 
     The sensitivities of AGCM-simulated Tropical Cyclones to  
     initial conditions. 



Example: Model Selection 

Recall that y=f(x):  
 
 
1. Model Selection:  
Reed-Jablonowski TC test case in Community Atmosphere Model  
 Integration time:  

10 simulation days 
Construction:  
The finite volume (FV) dynamical 
core is paired with CAM 5.1.1.  
The horizontal resolution is 
0.5x0.5.  
Vertical levels are 30 in total.  
The dynamical and physical time 
step is 90s and 900s, respectively.  

Model (f)  Model Initial (x) Model Output (y) 

Snapshots of the tropical cyclone-like vortex at days (left) 0, 
(middle) 5, and (right) 10 at the resolution       L30. 0.5



2. Model Input: 300 sampling points 

x1: Vortex size  
x2: Vortex intensity  
x3: Atmospheric instability  
x4: Sea surface temperature  
x5: 500 hPa relative humidity  

Parameters Range 

Radius of Maximum Wind Speed (RMW, km) [175, 300] 

Maximum Wind Speed (MWS, m/s) [12.5, 25.0] 

Temperature Lapse Rate (Gamma, K/km) [5.5, 7.5] 

Sea Surface Temperature (SST, C degree)  [22.5, 34.0] 

500-hPa Relative Humidity  [0.4, 0.7] 

3. Model Output 
y1: Intensity (MWS) 
y2: Precipitation rate (PRECT)  
y3: Longwave cloud radiative forcing (LWCF) 
y4: Shortwave cloud radiative forcing (SWCF) 
y5: Cloud liquid water path (LWP) 
y6: Cloud ice water path (IWP) 
 
*y1 is defined by the maximum wind speed at 
100-m above surface. 
*y2-y6 is governed by the area-weighted 
average over the tropical cyclone region.   

 

Example: Input and Output Selection 



Example: Choice of emulator 

Expanded Multivariate Adaptive Regression 
Splines (EMARS): emulator/surrogate model/meta-
model  
• a newly developed non-parametric regression technique.   
• an extension of Multivariate Adaptive Regression Splines 

method. 
• automatically models non-linearities and interactions 

between variables.   
• has the advantage of allowing  quadratic or higher order 

components in the model building process.  
MARS: piecewise linear functions 
EMARS: piecewise polynomial functions   



Example: Evaluate the fit from EMARS 
emulator  

Comparison between AGCM-simulated output values and 
Emulator fitted output values for the same input points.   

Comparisons of fitted TC intensity by three 
different emulators and the AGCM-simulated TC 
intensity.  



Example: Input-Output (IO) Relationships 

The sensitivity index of the six output variables to the five initial parameters. 
Sensitivity index is proportion of increase in residual sum of square. It is a 
measure of importance of the variable. Higher values imply high sensitivity of 
the variable.  

The one parameter input-output relationships 
with other four parameters fixed to median 
value of their range.  



Example: Input-Output (IO) Relationship with 
co-vary input parameters 

The relationship that quantifies how the output variables change when the input parameters SST 
and Gamma (vertical lapse rate) change simultaneously with other three input fixed to median.    

Linear: 
• Intensity 
• LWCF 
 
Nonlinear:  
• PRECT 
• SWCF 
• LWP  
• IWP  



Example: Output-output (OO) 
Relationships 

Intensity-precipitation relationship: 
When TC intensity is small (<50 m/s), precipitation tends 
to be independent with it; 
When TC intensity is strong (>= 50 m/s), precipitation has 
positively linear correlation with it.  

Intensity-LWCF relationship:  
TC LWCF has positively linear correlation 
with TC intensity.   



Conclusions 

 We have explored the new utility of a proven uncertainty 
quantification framework on the analysis of the dynamical 
systems. 

 Using tropical cyclone as an example, we illustrate how to 
apply the uncertainty quantification framework to achieve this 
goal. Namely, it figures out numerous input-output 
relationships and output-output relationships in numerical 
simulations. 

 The results show that the framework has the potential to apply 
on other similar problems and improves our understanding the 
relationships between dynamical systems and atmospheric 
conditions.  

 
 



   

                              Questions? 



Expanded MARS 

Formally, MARS builds a statistical model of the form: 
      either a hinge function or product. The coefficients      are estimated using a least square 
form of criterion.  
The algorithm for Expanded MARS (EMARS) is:  
1. For a multi-dimensional problem with    predictors (           ) , expand the predictor space 
from      to          by augmenting the original predictors with                                                  . 
2. Fit the ordinary MARS model based on the expanded predictor space   .  

1 0 1
ˆ ( ,... ) ( ,... )n j j n

j
f x x B x xα α= +∑

:jB α

n 1,..., nx x

n L n×
2 2

1 1 1( ,..., ; ,....., ;...; ... )L L
n n px x x x x x x=

x

={ 



Multivariate Adaptive Regression Splines 

• Model is constructed of additive and multiplicative hinge 
functions 

• Result is an improvement over linear fit, multiplicative hinges 
address nonlinearity and interaction. 

18 

Hastie, Tibshirani, and Friedman (2009), Elements of Statistical Learning 
http://link.springer.com/book/10.1007/978-0-387-84858-7/page/1 

Left:  
linear function 
Right: 
MARS 



Future work – the impact of parameterized physical processes on TC simulations 

24 parameters are 
selected from Zhang-
McFarlane (ZM) deep 
convection (8), 
University of 
Washington (UW) 
shallow convection 
(5), Morrison-
Gettelman (MG) two 
moment cloud 
microphysics (8) and 
cloud macrophysics 
(2).  
 



  
                Thank you! 
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