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One of the Reviewer’s Comments on the UNICON Papers

Unfortunately, in many respeckts, the final result (these two papers) is
disappointing. At this stage these papers should not be published in
the Journal of the Atmospheric Scliences, and should be rujuﬂtud.

unfartunately, these two papers do
not really provide any partieuwlar improved understanding of convestion.
The key problem with these papers is that the auther describes a falrly
complex parameterization but the results of the implementation that are
shown and discussed provide no particular Lnsight Lnto how good and
realistic the parameterization is.

What the auther 18 trying to develap 18 really ambitious (& wunlifled
convection parameterization) and that 1s really important. But because
1€ 18 = ambitieus, the avther nesds to uhderstand that the avaluatiosn
gf such a unifiled schems peeds o be axtremely detalled and thorough.
Ihese $wo papers look morpe JlikKe ap Jipterpal report (documenting the
equations in detail and comparing to the contraol version of the madel )
rather thapn & paper that waowuld bBe of gqreat interest to the readers of
F

Ta  bHe Ed.i]‘.'l 1 think the worat thing that could happen to this Work
Would be for thege papers Lo b :'I.Ii'li'EEtErj and ELLEJ].i‘.-'I‘."'.Ed (more or less)

as they are. has it is, they do not provide much guidanee about the
performance and sensitivities of this unified parameterization, and
there would be a considerable riak that people would not pay too much
ttention &40 1t.

i _ _ I will repeat
that, as far as I ecan gee, the worst thing that could happen to this
work would be for these papers to be accepted and published [more or
less) as they are.




Various Responses from the General Community

“..What a daring masterwork, so rare these days. And what a humble
privilege you have had, 5 years to see it through. | am reminded of Vic
Ooyama’s unusual and not very publication-numerous yet profound
career and deep thinking style...”

“...Itis a great pleasure to read your recent two papers on a new cumulus
parameterization scheme (i.e. the UNICON), which is a nice frame work
for future high-resolution modeling due to its scale-adaptive capability
and a prototype scheme for organized convection...”

like your philosophy particularly for the development of a new-
generation cumulus parameterization, like the Tiedtke scheme, which
took many years to develop, but becoming very useful even in many
coming years...”

“...I am writing this email firstly to congratulate you for your two nice
articles published recently in JAS on your UNICON scheme. | have
enjoyed so much both papers. Many other colleagues also commented
me that your recent papers are the best in convection...”

“..I am very impressed by theoretical basis as well as the simulation
characteristics...”
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Evolutions of CAM-CESM1

Model CcCsM3 CCSM3.5 CCSM4 CESM1
(2004) (2007) ( Apr 2010) (Jun 2010)
Atmosphere CAMS3 (L26) CAM3.5 (L26) CAM4 (L26) CAMS5 (L30)
Boundary L -Bovi -
ounaary Layer Holtslag-Boville (93) Holtslag-Boville Holtslag-Boville Brether.ton Park (09)
Turbulence Dry Turbulence UW Moist Turbulence
Shalloyv Hack (94) Hack Hack Park-Bretherton (99)
Convection UW Shallow Convection
Deep Zhang-McFarlane Zhang-McFarlane Zhang-McFarlane
c i Zhang-McFarlane (95) Neale et al.(08) Neale et al.(08) Neale et al.(08)
onvection Richter-Rasch (08) Richter-Rasch (08) Richter-Rasch (08)
Cloud - -
ou . Zhang et al. (03) | Zhang et al. | Zhang et al. Park .Bretherton Rasch -(14)
Macrophysics with Park & Vavrus’ mods. with Park & Vavrus’ mods. Revised Cloud Macrophysics
Stratiform Rasch-Kristjansson (98) Rasch-Kristian. Rasch-Kristian. Morrison and Gettelman (08)
Microphysics Single Moment Single Moment Single Moment Double Moment
Radiation / Optics CAMRT (01) CAMRT CAMRT RRTMG.
lacono et al.(08) / Mitchell (08)
ACrosols Bulk Aerosol Model BAM BAM Modal Aerosol Model (MAM)
(BAM) Liu & Ghan (2009)
Dynamics Spectral Finite Volume (96,04) Finite Volume Finite Volume
Ocean POP2 (L40) POP2.1 (L60) POP2.2 - BGC POP2.2
Land CLM3 CLM3.5 CLM4 - CN cLMm4
Sea lce CSIM4 CSIM4 CICE CICE




MOTIVATION for developing UNICON

In nature, a continuous transition from shallow to deep convection widely occurs
both in space and time. This seamless transition from shallow to deep cumulus
cannot be adequately simulated by separate shallow and deep convection schemes.

CAMS5 uses a process splitting, in which shallow convection scheme is operating on
the input state updated from the proceeding deep convection scheme. The
performance of model, however, is sensitive to the sequence of deep and shallow
convection schemes.

A direct association between the observations and the parameterized physical
processes in the existing convection schemes is very weak (e.g., an inherent problem
of equilibrium-based convection scheme).

Developing a suite of scale-adaptive physics parameterizations is one of the most
important but ambiguous subjects in the modeling community. Developing an
appropriate convection scheme is at the heart of this mission.

Many biases in the GCM-simulated climate are associated with the convection
schemes.



OUTLINE

l.  Introduction of UNICON
. Conceptual Overview
. 3 Key Physical Processes

Il. Single-Column Simulations
. Dry Convection
. Stratocumulus-to-Cumulus Transition
. Shallow Convection
. Deep Convection

lll.  Global Simulations
. Climatology
. Variability (ENSO, MJO, Diurnal Cycle of Precipitation, Tropical Cyclone)

l. Future Works



WHAT IS UNICON ?

A subgrid vertical transport scheme by non-local asymmetric turbulent eddies, consisting
of subgrid convective updrafts, convective downdrafts, and meso-scale organized flow.

TRADITIONAL WIEW IM CAM
Regime-Dependent Paramelerization

(a)
Fraw-Tropaspharic
Transport

C :) Enﬂ?t?inn
C) et
.

Lecal Transport FEL
i scheme
L kor-Local

Transpart
Pl [Dry Coractian]
R
SURFRACE

UNICON is not designed to simulate the observed convection but designed to simulate subgrid
non-local asymmetric turbulent eddies = UNICON is a scale-adaptive parameterization.



SCALE ADAPTIVITY

Advection, PBL, Convection DEFINITION

1.

=3

1)

=

[ 1]

=]

Ideally, the

s ol vertical transport from these|three schemes|over a hxed geographical domain {e.g.

Lhe whole Earth) should be invariant to the changes of the horizontal grid size ol the model

(r = Ar - Ay where Ar amd Ay are the zonal and merudional width of the model grid,

CONDITIONS

If the advection scheme accurately sunulates grd-mean How in various (7, a

et of sufhcient amd necessary conditions to achieve this|scale-adapizvifey] 1= that (1) both

PBL and convection schemes are designed to parameterizel| velafeeve| sub-grid motion with

respect Lo the resolved grid-mean How, (2) the relative sub-grid motion parameterized by

Lhe convection scheme s completely]| separated|rom that parametenzed by the PBL scheme,

and (3} the PBL and convection schemes should be able to parameterize thelentere

siub-grul motion together,

relative



Compensating Compensating
Subsidence | Subsidence

Convection stabilizes atmosphere by compensating subsidence.
Quasi-Equilibrium (QE) Assumption:

Whenever a grid-column is destabilized by non-convective
processes (e.g., radiation), convection tries to stabilize the grid-
column within a certain convective-overturning time scale.




UNICON simulates all dry-moist, forced-free, and shallow-deep convection

within a single framework in a seamless, consistent and unified way.
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UNICON consists of subgrid

Convective Updraft, Convective Downdraft, and Mesoscale Organized Flow.

* Initialization ( ¢,.w .M .a .R,) * Source de)ﬁ'ng Top, Constrained )
» Mixing ( (£,.0,) = R.") * Evaporation of Precipitation
* Production of Precipitation * Sink ( Detrainment )

* Forced by Convective Downdraft and Evaporation of Convective Precipitation

* Decayed by Surface Flux and Entrainment at the PBL Top

Prognostic treatment of mesoscale organized flow allows UNICON to carry the convective
plume memory across the model time steps.



3 Key Physical Processes unique in UNICON

I. Parameterization of Updraft Mixing Rate
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ll. Generation of Mixing Downdraft
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lll. Mesoscale Cold-Pool and its Feedback on Convective Updraft
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|. Parameterization of the Updraft Mixing Rate, &,
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Il. Generation of Mixing Downdraft
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LES-Simulated Moist Static Energy
( Khairoutdinov and Randall, JAS 2006 )

Density Current
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Precipitation forces the cloud structure to be more organized (or heterogeneous).




How does precipitation induce an organized convection ?

00O
00O
0o O
00O

PBLTop (st e
i 0O o0 o0
@ 00 @ 00
Evaporation Forced Evaporation
of Updraft of
Precipitation Precipitation
( Cold Pool ) ( Cold Pool )

Meso-Scale Flow

SURFACE

Meso-Scale Flow

Can we simulate this meso-scale organized flow induced by precipitation in GCM ?



lll. Formation of Prognostic Cold Pool and Its Feedback to Convective Updraft
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As convection is more organized (QQ>0), convective updraft becomes stronger and wider.




OPERATING REGIMES UNICON vs CAM5

DCBL STCU BOMEX ARM97

Stable PBL mp Dry Conv. mp Sc. Conv. mp Sc to Shallow Cu mp Shallow Cump Deep Cu

(Convection) (Stratocumulus) (Cumulus)

—oeo ENS
CAMS5 Moist Turbulence (or PBL)

C >> CAM5
CAM5
Shallow Convection
UNICON
CAMS5 #
Deep Convection
i >

UNICON

CAMS5 : CAMS PBL + Shallow Convection + Deep Convection
UNICON : CAM5 PBL (local) + UNICON (nonlocal)



Single-Column Simulations

Dry Convection (DCBL)
Stratocumulus-To-Cumulus Transition (STCU)
Shallow Convection (BOMEX)

Deep Convection (ARM97)



Dry Convection (DCBL)

e Forced by a constant surface sensible heat flux, SHF = 300 Wm-2 starting from a
stable 9
initial profile of grid-mean potential temperature,

* No moisture exists throughout the simulation

Z, - Inversion Base Height FB E(gJ w'é’
. Updraft Top Height

ZTOP

Convective
HE 1 Overshooting !

-

FEEpT

Tiesn | boan |
i :

e UNICON simulates colder (warmer) airs in the lower (upper) PBL than CAM5, similar to LES.
* UNICON does a desired non-local transport in the dry convective PBL with overshooting.



Stratocumulus-To-Cumulus Transition (STCU)

* Simulate the stratocumulus-to-cumulus transition over
the subtropical eastern Pacific ocean.
e Initial profile characterizes a well-mixed stratocumulus -
deck capped by a strong inversion. =
* SST increases gradually from 293.75 to 299.17 K for 3 days

with diurnal cycle of SW radiation (a red sign curveq\ﬁ'

]

* UNICON simulates decoupled PBL better than CAM5
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Shallow Convection over the Ocean (BOMEX)
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Deep Convection over the Southern Great Plain (ARM97)

—— : Stratiform Precipitation Rate
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Deep Convection (Continued)

Model Biases against Observation

SKILL SCORE =
AT AQ, rmse (UNICON) / rmse (CAMS5)
F » | N CASES SKILL SCORE
y —__ '
CAMS %; - ' : DCBL 0.95
L J I .| BOMEX 0.63
melml e ARM97 0.54
H i i
-II'I

UNICON

Hangh | &'m |




GLOBAL SIMULATIONS

Mostly from the simulations submitted
for the evaluation,
except ENSO and Tropical Cyclone



Taylor Diagram. AMIP (1995-2004). 1-degree.
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Cloud Biases in UNICON (vs CERES-EBAF, CALIPSO) Too

Small

ANN. AMIP. 1-degree. CLDLOW
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ENSO Composite of TS (Color) and SLP (Line). DJF.
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OBS.

CESM. 1-deg.
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Figure 1: The composites of 300 hI’a geopotential height anomalies associated with the

MIO phases 1, 3, 5, and 7 (top to bottom) using ERA-interim, UNICON, and CAM (left

From Yoo et al. J. Climate. Submitted.
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TROPICAL CYCLONE

Track and Passage FQ
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* Analysis of 6-hrly output at 0.5°lat x 0.5°lon (AMIP. 1979-1998) with the following 3 criteria:
1. & > & 2. Gy — G > AL 3. Persist at least 2 days
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Analyzed by Dr. Minho Kwon. KIOST (Korea Institute of Ocean Science and Technology)
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TROPICAL CYCLONE

Interannual Variability of Passage FQ
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SUMMARY

UNICON — a subgrid vertical transport scheme by nonlocal asymmetric turbulent
eddies — simulates all shallow-deep, dry-moist, and forced-free convections
within a single framework in a seamless, consistent and unified way.

UNICON is a process-based model without using the quasi-equilibrium
assumption, so that it is, in principle, can be used as a scale-adaptive convection
scheme in any size of GCM horizontal grid.

UNICON improves the single-column simulations of stratocumulus-to-cumulus
transition and shallow and deep convection cases.

UNICON well simulates both the ‘climatology’ and ‘variability’ (e.g., MJO,
Diurnal cycle of precipitation, Tropical Cyclone) compared to CAMS.



Future Works Until May.15.2015.

REDUCE ENSO AMPLITUDE
* Run “1-degree” UNICON coupled simulations with the already tuned “2-degree” UNICON
model parameters (this seems to be the right way since UNICON is designed as a scale-
adaptive scheme).

INCREASE CLDLOW IN THE TRADE-CUMULUS REGIME
* Compute “additional liquid stratus fraction, AA_| .~ generated by the detrained liquid
convective condensate, without assuming instantaneous homogeneous mixing over the

entire grid.
IMPROVE COMPUTATIONAL EFFICIENCY

 Currently, UNICON takes about 60% more computation time than CAMS5. Surprisingly, more
than 50% of UNICON computation time is used for the initialization of variables. This needs

to be addressed.
INCREASE SEA-ICE FRACTION

* UNICON simulates less sea-ice fraction than the observation. This may be associated with
the tuning of turbulent mountain stress (TMS). This needs to be addressed either by retuning
TMS or adjusting sea-ice parameters (e.g., the size of snow flake on the sea-ice) within

allowable range.
PREVENT MODEL CRASH

* Occasionally, UNICON crashes with the error messages of very large values of “surface
latent heat flux” and “dust concentration”. This is likely due to the neglect of the mixing
between convective downdraft and environment. This can be easily addressed by allowing a
certain lateral mixing for the convective downdraft (e.g., ¢, =0, =2 e *[m™] as Tiedtke).



UNICON Single-Column Simulation. ARM97.

(B} T R
=]
Blue : Downdraft
Black : Environ. .
L]
- EEl
;-
L P
¥
- 1]
] |
¥

Too much
drying in the
lowest layer

-1 -0 )] 4

ak cay |

HE=grm | hiFa |

£EEZ

iy | P |
B EBEBEEES

3

dXi
EEl

Bkl

L

(2]

Too strong wind
in the lowest layer




Trust-Based Collaboration with UNICON

MODEL DEVELOPMENT
v Improving aerosol-precipitation interaction within UNICON:
e Collaboration among University of Wyoming, PNNL and NCAR within SciDAC.
v’ Coupling ‘turbulence statistics’ with ‘subgrid cloud-precipitation processes’:
* NCAR and KOPRI (Korea Polar Research Institute), possibly with Vincent Larson.
v’ Improving various other aspects of UNICON including detailed diagnosis of UNICON:
* NCAR, PNNL and University of Miami, etc.
v’ Contribution to other models:
* NCAR (WRF), NOAA (with Univ. of Washington, Columbia Univ., Univ. of Miami, Univ. of
Texas; Univ. of Hawaii, etc.), CPTEC (Brazil), KIAPS (Korea)
VALIDATION
v’ Constrain model parameters using UQ, LES, observations and CAPT:
« UQ: DOE (PNNL)
e LES: Harvard and Columbia Univ.
* Observations and CAPT: DOE (LLNL), NCAR
v’ Test UNICON in a variable grid mesh as a scale-adaptive scheme:
* NCAR and DOE (with CAM-SE; MPAS)
EVALUATION-APPLICATION
v MJO, ENSO, Tropical Cyclone, Diurnal Cycle of Precipitation, Seasonal-Decadal Prediction,
Paleo-Climate, etc.:
e DOE (PNNL), Univ. of Washington, Stony Brook Univ., Yonsei Univ., KIOST (Korea
Institute of Ocean Science and Technology); Univ. of Hawaii, etc.



SIMPLICITY vs CONSISTENCY

* |nitialization (¢,.w .M .a,.R,) * Source ( Mixing, Top, Constrained )
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Too strong wind in the lowest layer
due to the simplifying assumption of £,=6,=0, * Forced by Convective Downdraft and Evaporation of Convective Precipitation
which destabilizes the system. * Decayed by Surface Flux and Entrainment at the PBL Top
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