Climate feedbacks and relationships between TOA radiation and temperatures on Earth: CESM vs Observations

> Kevin E Trenberth NCAR

Why does the energy imbalance vary so much and so fast? What does this imply • For climate sensitivity analysis from data?

For feedbacks?
EARTH'S ENERGY BALANCE REVISITED

Global warming:

Under no climate change, the net flow of energy in from the sun is balanced by the net radiation out to space.

ASR=OLR

With global warming there is a net energy imbalance as heat trapping gases lower OLR: Net $R_T = ASR - OLR$

Net TOA radiation anomalies

Standard deviation 0.64 W m⁻²: Anomalies over 1 W m⁻² common.

Base period: Jan 2001-Dec 2010

Global Temperatures Jan 1979 to Oct 2013

r= 0.81 0.72 (0.77 2 mo) 0.37 (lag 4) 0.52 detrend (5)

0.66

Correlation between tropospheric mean T and net TOA radiation

March 2000 through October 2013 (ERA-I w CERES) correlation = -0.57 regression = -2.18 W m⁻²/K

i.e. for a 1° C increase in T, there is 2.18 W m^{-2} extra radiation to space.

CESM-LE and CAM-5.3 AMIP CAM 5.1

Focus on 1994-2005: post Pinatubo Large_ensemble: 30 members AMIP: 1 member

6 ensemble members

CAM5-AMIP run: specified SSTs

CESM-LE ensemble mean 1994-2005

Correlations between T_{2m} and precipitation

Over ocean: observed -ve vs +ve in model

This is mostly ENSO: Walker circulation does not adequately suppress precipitation in W Pacific during El Niño in model. Correlations between T_{2m} and Precipitation

Correlation

Feedbacks

$$\mathbf{R}_{\mathrm{T}} = \mathbf{F} - \lambda \Delta \mathbf{T} + \varepsilon$$

1994-2005				
For T _{trop} (1000-150 hPa) regre	ession in W r	n ⁻² K ⁻¹		
	RT=	ASR-	OLR	
Observed:	-2.18	-0.68	1.49	±0.1
AMIP	-1.96	-0.05	1.91	
CESM-LE	-1.71	0.08	1.79	
For T _{2m}				
	RT=	ASR-	OLR	
Observed:	-1.17	0.58	1.76	
AMIP	-0.87	0.92	1.78	
CESM-LE	-0.98	0.81	1.78	W m ⁻² K ⁻²

Negative feedback in model not as strong as observed, mainly because of ASR (cloud).

Biases in model

The model does very well in many respects, but...

- ENSO too large, different.
- Vertical profile of temperature in CESM top heavy: is this because of enhanced ENSO or more generically related to deep convection?
- The dry zone in tropics is under represented.

Biases over warm pool

- Walker circulation plays a key role (non-local links between E and W Pacific)
- Over oceans, high SST → more precip & more water vapor and cloud → ASR, and OLR less. In model extends to warm pool (not in obs).

Biases in model

- Generally, Cloud $\widehat{U} \rightarrow ASR_{1} \rightarrow T_{2m}$
- Hence ASR and T_{2m} are +ve correlated over land and some places over ocean; lot less in model
- In model, over oceans, T_{2m} û → cloud and convection û → ASR J and -ve correlation
- Too much ASR as temperatures rise means total radiation feedbacks with temperatures are not negative enough.
- Does this mean that climate sensitivity is too large in model?

