Analyses of CAPT simulations with CAM5.5 candidate schemes based on observations in the Azores

Xue Zheng, Stephen A. Klein, Hsi-Yen Ma, Shaocheng Xie (PCMDI/LLNL)

Peter Bogenschutz, Andrew Gettelman, Cecile Hannay, Richard Neale, Sungsu Park (NCAR)

2015 AMWG Meeting, NCAR, Boulder, CO

Lawrence Livermore National Laboratory

Motivation:

To assess CAPT simulations of marine boundary layer (BL) clouds with the CAM5.5 candidate

 schemes:- CAM5.3 with CLUBB/MG2
- CAM5.3 with UNICON

CAP-MBL field campaign from Jun. 2009 to Dec. 2010. (Wood et al. 2014)

Methodology

- Three sets of 5-day hindcasts from June 2009 to April 2010: Day 2 at one grid column (39.1N, 27.5W)
- CAM5.3 control; CAM5.3 CLUBB/MG2; CAM5.3 UNICON
- Observations: ~7600 hours of observations; ~2200 hours of low-cloud only condition (30\%)
- Low cloud statistics: low-cloud-only hours in both model and observation
- Case study: a two-day time period experiencing open cell clouds and closed cell clouds

Averaged cloud fraction from observed low-cloud hours

- Control simulation has the highest cloud fraction
- CLUBBMG2 and UNICON are pretty close to each other except the lower BL

Low cloud statistics: low cloud cover

- Very low values in UNICON low cloud cover
- UNICON gets the best correlation
- CLUBBMG2 gets the best mean cloud cover
- Negative bias in cloud cover and all-sky LWP

Low cloud statistics: in-cloud LWP

Low cloud statistic: surface radiative forcing

——Median

+ Mean
- $25 \%-75 \%$
- $9 \%-91 \%$

Weaker than Obs., consistent with cloud cover and LWP biases
Thin clouds: among the low clouds observed in the Azores, 40% have LWP < $60 \mathrm{~g} / \mathrm{m}^{2}$ and $1 / 3$ are with a thickness $<250 \mathrm{~m}$. $>50 \%$ clouds are thinner than the model layer depth.

Case study: 11/21/2009 open cell clouds

MOD021KM.A2009325.1240.005.2009325214620.hdf Terra MODIS Truecolor Scene

Case study: 11/22/2009 closed cell clouds

(Remillard et al. 2012)

$2 \times$
PCMDI

Radar observation vs. modeled cloud fraction

convective cloud fraction (~3\%)

Cloud oscillation in CLUBBMG2 scheme

ARM

PCMDI

Cloud/BL oscillation in CLUBBMG2

Office of

ARM
Science

Summary:

- All schemes produce too few low cloud cover and all-sky LWP.
- On Average, CLUBB/MG2 performs slightly better in-cloud LWP simulation. UNICON produces too few cloud cover and too much incloud LWP. Results are consistent with global satellite analyses and CAPT global analyses.
- Low clouds simulated with all three schemes have too weak surface radiative forcing. UNICON has the weakest surface longwave radiative forcing.
- In a case study, UNICON produces convective cloud fraction (~3\%) throughout the whole BL layer continuously.
- CLUBB/MG2 produces unrealistic cloud/BL oscillation, whose frequency relates to the sub-time step.

Thanks!

Supplement slides

Radar observation vs. modeled cloud fraction

Cloud oscillation in CLUBBMG2 scheme

P2
PCMDI

Cloud surface radiative forcing

