A New Method for Representing Subgrid Heterogeneity in Land Models

Ian Baker¹, Piers Sellers², Scott Denning¹, David Randall¹, Isaac Medina¹, Parker Kraus¹

I: Colorado State University, Atmospheric Science Department 2: NASA, Goddard Space Flight Center

LMWG meeting, NCAR, 2-4 Mar 2015

Soil Moisture Heterogeneity

Fang et al., 2013

LMWG meeting, NCAR, 2-4 Mar 2015

Plant Response to Soil Moisture

Latent Heat (W/m2)

Sensible Heat (W/m2)

40

20

0

FEB

MAR

APR

Data from FIFE (Colello et al., 1998; Sellers et al., 2007)

Water Stress Factor As A Function Of Total Plant Available Water (PawTot)

Parameterized evaporation control: Baker et al. (2008), Medina et al. (2014)

JUN

MAY

LMWG meeting, NCAR, 2-4 Mar 2015

AUG SEP

OCT

JUL

The problem with doing it this way

$$E = E_p f(W)$$

 $\langle E \rangle \neq E_p f(\langle W \rangle)$

 $f(x) \neq f(\bar{x})$

а

ь

Several ways to consider wetness: from Sellers et al. (2007)

0.6 (W)

0.8

50 500 500

0.9

0.8

0.7

A New Approach: Wetness Bins

We can define a finite number of 'bins' within the model to represent spatial variability in wetness

$$\langle E \rangle = E_p \int_A f(W) da$$

$$\int_{A} f(W) da \sim \sum_{j=1}^{nbins} f(W_j) a_j$$

From the Toy to the Full Model

Medina et al., JAMES, 2014

black = $\overline{f(x)}$ gray = $f(\overline{x})$ dashed = bins

From the Toy to the Full Model

 PROBLEM: How can we reconcile a single'wetness' bin with a verticallyvariable soil column?

Solution: Modify Model Sequence

- I. Precipitation onto canopy (throughfall, drainage)
- 2. Surface interception/runoff/infiltration
- 3. Update bins/z-column
- 4. Determine stress f(W)

$$\int_A f(W) da \sim \sum_{j=1}^{nbins} f(W_j) a_j$$

- 5. Calculate Energy/Moisture exchange
- 6. Remove water from soil (transpiration)
- 7. Update bins/z-column

$$\sum_{j=1}^{nbins} W_j a_j = \sum_{i=1}^{nsoil} W_i, z_i$$

Results: A Site That Works (PEG)

f(w) for the control run (red)

I. Control: Baker et al. (2013), 'adjusted'SW stress

2. Control w/ realistic stress: 'Wrong answer, right reason'

3. BINS

f(w) for 'control w/ realistic' (green) and bin (blue) runs

Results: A Site That Works (PEG)

Results: A Site That Works

bin number

evaporation control f(w)

fraction of saturation/bin

LMWG meeting, NCAR, 2-4 Mar 2015

f(w) for the control run (red)

f(w) for 'control w/ realistic' (green) and bin (blue) runs

LMWG meeting, NCAR, 2-4 Mar 2015

0.2

03 04 05 06 Soil Wetness (W)

Results: A Site That Doesn't Work

infiltration/runoff partition

fraction of saturation/bin

LMWG meeting, NCAR, 2-4 Mar 2015

Conclusions

- The bins work quite well in semi-arid to arid regions
- Some problems in wet tropical forests
- Code is robust to bin number, bin spacing
- Energy and water balance to machine precision (bin- and z-columns)

Implementation

- Should we see bins as an alternative to CRMs?
- Are bins a complement to MASL?
- Or would bins coupled to MAML provide a link to hydrology?
- How would bins interact with subgrid tiling of PFTs?

QUESTIONS?

