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Representation of subsurface hydrologic processes in CLM

» (-based Richards equation which is
sequentially coupled to unconfined
aquifer model.

» Spatial discretization: Finite Volume
with 10 soil layers.

» Temporal discretization:
Crank-Nicholson method.
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Representation of thermal processes in CLM

:frac_sno_eff : : frac_h2osfc

hs_top_snow
> Spatial discretization: Finite Volume ; l
with: ]
» 5 (max) snow layers,
» Surface water, and
> 15 soil layers.

hs_h2osfc

hs_soil.

» Temporal discretization:
Crank-Nicholson method.

» Phase change is accounted for the
model.




Shortcomings of existing process representations in CLM
> Loosely coupled unsaturated-saturated subsurface hydrology.
» Extension of current formulations to include new processes is not
straight forward.
» Few examples of new processes in this work include:
» Macropore flow,
» Lateral heat transport due to heterogeneous snow depth.
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Portable, Extensible Toolkit for Scientific Computation

v

The new modeling framework uses PETSc.

v

Developed at Argonne National Laboratory.

v

“PETSc is a suite of data structures and routines for the scalable
(parallel) solution of scientific applications modeled by partial
differential equations'?!

v

Provides solution to following types of problems:
» Linear equation: Ax = b

> Nonlinear equation: F(x) =0

» Timestepping of ODE and DAE: F(t,u, i) = G(t, u)
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Portable, Extensible Toolkit for Scientific Computation

v

The new modeling framework uses PETSc.

v

Developed at Argonne National Laboratory.

v

“PETSc is a suite of data structures and routines for the scalable
(parallel) solution of scientific applications modeled by partial
differential equations'?!

v

Provides solution to following types of problems:
» Linear equation: Ax = b
> SoilWaterMovementMod ()
> LakeTemperatureMod()
> SoilTemperatureMod()
> Nonlinear equation: F(x) =0
» CanopyFluxesMod ()
> CanopyTemperatureMod ()

» Timestepping of ODE and DAE: F(t,u, i) = G(t, u)
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Example of a coupled “multiphysics” problem

frac_sno_eff ;

: frac_hzosfc

Snow

H20SFC

Soil



Example of a coupled “multiphysics” problem (cont'd)

> Matrix A for multiple columns that are independent.
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Example of a coupled “multiphysics” problem (cont'd)

» Matrix A for multiple columns with laterally connected soils.
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Example of a coupled “multiphysics” problem (cont'd)
» PETSc representation of Matrix A.




Example of a coupled “multiphysics” problem (cont'd)

subroutine AssembleMatrix(A)

! Get diagonal matrices

call MatGetSubmatrix(A,0,0,A_snow)
call MatGetSubmatrix(A,1,1,A_sfc)
call MatGetSubmatrix(A,2,2,A_soil)

! Get off-diagonal matrices

call MatGetSubmatrix(A,0,2,A_snow_soil)
call MatGetSubmatrix(A,1,2,A_sfc_soil)

call MatGetSubmatrix(A,2,0,A_soil_snow)
call MatGetSubmatrix(A,2,1,A_soil_sfc)



Example of a coupled “multiphysics” problem (cont'd)

subroutine AssembleMatrix(A)

! Get diagonal matrices

call MatGetSubmatrix(A,0,0,A_snow)
call MatGetSubmatrix(A,1,1,A_sfc)
call MatGetSubmatrix(A,2,2,A_soil)

! Get off-diagonal matrices

call MatGetSubmatrix(A,0,2,A_snow_soil)
call MatGetSubmatrix(A,1,2,A_sfc_soil)
call MatGetSubmatrix(A,2,0,A_soil_snow)
call MatGetSubmatrix(A,2,1,A_soil_sfc)

call AssembleMatSnow(A_snow)
call AssembleMatSrfw(A_sfc)
call AssembleMatSoil(A_soil)

call AssembleMatSnowSoil(A_snow_soil)
'Do the remaining steps



Variably Saturated Flow Model (VSFM)

Governing equations for flow in porous media are given by:
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Variably Saturated Flow Model (VSFM)

Governing equations for flow in porous media are given by:

At) — - (pa) + 5 1)

kk,
q=-
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V(P + pgz) (2)
Approach-1: Use PETSc non-linear solver (PFLOTRAN formulation)
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Variably Saturated Flow Model (VSFM)

Governing equations for flow in porous media are given by:

O(Psw
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kk,
q=-
1

V(P + pgz)
Approach-1: Use PETSc non-linear solver (PFLOTRAN formulation)
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Approach-2: Use PETSc time stepper for DAE
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P-1: Infiltration in a very dry soll
» 1 [m] deep soil column (Celia et al. (1990)).
» Conditions
» IC: P(z,t =0) = —10[m]
» BC: P(z=0,t) = —0.75[m]
» Model captures the sharp wetting profile at t = 24 [hr].
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P-2: Transient flow in layered soils
» Evolution of pressure profile between two steady state conditions.
> Ks,top/Ks,bot =10
» Top boundary conditions
» Wetting flux: 2.5 x 107° [m s71]
» Drying flux: 2.8 x 1078 [m s7]
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P-3: Water table dynamics
» Soils are same as in Celia et al. (1990).
» Conditions
» IC : Hydrostatic condition with water table at 0.5 [m]
» BC: Top flux = 2.5 x 1075 [m s7]
» The simulalted steady state water tai)le depth at t = 1[d] is 0.7 [m].
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P-4: Macropore flow
» Dual continuum connected matrix?> problem described in Gerke and
van Genuchten (1993)
> Vmpore = 0.05Viotar; Kmpore ~ 2000 x Ksoif
» Constant infiltration flux (50 [cm/d]) is applied only in the macropore.
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Lateral heat transport in the subsurface

Governing equations for heat

conduction are given by:

8T

o=V @+S (6

Use PETSc linear solver
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P-5: Propagation of temperature perturbation

» Evolution of an initial temperature perturbation applied to (i) top, and

(ii) left control volumes studied.
» Two types of temperature perturbation are applied: (i) spatially
homogenous; and (ii) sinusoidally varying.
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P-6: Lateral thermal transport in Arctic polygonal ground

» Simulation for a transect in a polygonal Arctic landscape.
» Heterogeneous snow depth due to microtopography.

» Differences in asz when thermal processes are represented as 1D or 2D.
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Summary

» A new modeling framework to couple multiphysics processes in CLM is
developed using PETSc.

» The framework has been applied to hydrologic and thermal processes
in CLM.

» The framework allows for:

» Addition of new processes (e.g. soil-macropore flow), and

» Extension to multi-dimensional process representation (e.g. lateral heat
transport).
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