Ecological consequences of altering the drought deciduous phenology algorithm

> Kyla Dahlin with Rosie Fisher & Peter Lawrence March 2, 2015

image credit: Forrest Copeland talesfromthebigcountry.wordpress.com

What happens when we change ("fix") the drought/stress deciduous phenology algorithm?

image credit: Forrest Copeland talesfromthebigcountry.wordpress.com

Where is CLM Stress Deciduous?

Questions

• How well does the stress deciduous phenology algorithm work in CLM? [Leaf Area Index]

(compared to AVHRR-derived LAI3g for 1982-2010; Zhu et al 2013)

Questions

- How well does the stress deciduous phenology algorithm work in CLM? [Leaf Area Index] (compared to AVHRR-derived LAI3g for 1982-2010; Zhu et al 2013)
- Did we make it work better? (with relatively simple changes)

Questions

- How well does the stress deciduous phenology algorithm work in CLM? [Leaf Area Index] (compared to AVHRR-derived LAI3g for 1982-2010; Zhu et al 2013)
- Did we make it work better? (with relatively simple changes)
- What are the ecological consequences of this change?

(in warm, long-day regions*)

CLM4.5 Tech Note from White et al 1997

(in warm, long-day regions*)

CLM4.5 Tech Note from White et al 1997

• Start growing leaves if...

- 3rd soil layer is wet (soil water potential > -2 MPa) for 15 days

(in warm, long-day regions*)

CLM4.5 Tech Note from White et al 1997

• Start growing leaves if...

 $- 3^{rd}$ soil layer is wet (soil water potential > -2 MPa) for 15 days

• Onset period fixed at 30 days

(in warm, long-day regions*)

CLM4.5 Tech Note from White et al 1997

• Start growing leaves if...

 $- 3^{rd}$ soil layer is wet (soil water potential > -2 MPa) for 15 days

- Onset period fixed at 30 days
- Start dropping leaves if...
 - Onset period is complete
 - 3^{rd} soil layer is dry (soil water potential < -2 MPa) for 15 days

(in warm, long-day regions*)

CLM4.5 Tech Note from White et al 1997

• Start growing leaves if...

- 3rd soil layer is wet (soil water potential > -2 MPa) for 15 days

- Onset period fixed at 30 days
- Start dropping leaves if...
 - Onset period is complete
 - 3^{rd} soil layer is dry (soil water potential < -2 MPa) for 15 days
- Leaf drop period fixed at 15 days

Correlations

Correlations

What about at single points?

> 0%

100%

Counting Peaks

AVHRR LAI3g

How does stress decidousness currently work in CLM?

(in warm, long-day regions)

CLM4.5 Tech Note from White et al 1997

- Start growing leaves if...
 - 3^{rd} soil layer is wet (soil water potential > -2 MPa) for 15 days
 - <u>It RAINS!</u> (20 mm in the past 10 days)
- Onset period fixed at 30 days
- Start dropping leaves if...
 - Onset period is complete
 - 3^{rd} soil layer is dry (soil water potential < -2 MPa) for 15 days
- Leaf drop period fixed at 15 days

Correlations

Correlations

What about fire?

What about fire?

What about fire?

New

GFED4 CLM4.5BGC ~1° resolution CRU-NCEP forcing 1996-2010

= > 5 0%
20 - 50
<mark> </mark> 10 - 20
<mark> </mark> 5 - 10
<mark>2</mark> - 5
<mark> </mark> 1-2
0.5 - 1
0.2 - 0.5
0.1 - 0.2
0 - 0.1%

New

New

Difference Maps

GFED4 - CLM4.5

 FIRE - CLM4.5BGC
 FIRE - CLM-MOD
 Stored C - CLM4.5BGC
 Stored C - CLM-MOD

 FIRE - CLM4.5BGC FIRE - CLM-MOD
 Stored C - CLM4.5BGC Stored C - CLM-MOD

 FIRE - CLM4.5BGC FIRE - CLM-MOD
 Stored C - CLM4.5BGC
 Stored C - CLIVI-IVIOD

 Delaying budburst until some rain has fallen gives better agreement with the satellite-derived LAI data, both for magnitude and seasonal cycle in savanna regions.

- Delaying budburst until some rain has fallen gives better agreement with the satellite-derived LAI data, both for magnitude and seasonal cycle in savanna regions.
- But this change degrades our ability to predict **fire patterns**.

- Delaying budburst until some rain has fallen gives better agreement with the satellite-derived LAI data, both for magnitude and seasonal cycle in savanna regions.
- But this change degrades our ability to predict **fire patterns**. But not by much.

- Delaying budburst until some rain has fallen gives better agreement with the satellite-derived LAI data, both for magnitude and seasonal cycle in savanna regions.
- But this change degrades our ability to predict **fire patterns**. But not by much.
- More implications? Soil C, climate feedbacks, etc.

Thanks!

Questions?

kdahlin@msu.edu www.msu.edu/~kdahlin @bristleweed

