Confronting CLM with land-surface observations

P. A. Dirmeyer^{1,2}, A. Tawfik³, S. Halder^{1,2},

H. Norton² and J. Wu²

¹Center for Ocean-Land-Atmosphere Studies

²George Mason University

³National Center for Atmospheric Research

Predictability and Prediction

Land states (namely soil moisture*) can provide predictability in the window from deterministic (weather) to climate

(seasonal+) time scales.

- To have an effect, there must exist:
 - 1. Sensitivity of fluxes to land states, and atmosphere to fluxes
 - 2. Sufficient variability
 - 3. Memory of initial land states

Predictability and Prediction

Land states (namely soil moisture*) can provide predictability in the window from deterministic (weather) to climate

(seasonal+) time scales.

- To have an effect, there must exist:
 - 1. Sensitivity of fluxes to land states, and atmosphere to fluxes
 - 2. Sufficient variability
 - 3. Memory of initial land states

CONUS Soil Moisture Data

International Soil Moisture Network*

	Stations	Years	Instruments	Notes
ARM	29	22	Heat Dissipation	Regional (Oklahoma & Kansas)
AWDN	50	13	Dielectric	Regional (Nebraska)
COSMOS	101	7	Cosmic Ray Neutron	Does not measure a set depth
FLUXNET	2	14	Dielectric	Most AMERIFLUX sites not available from ISMN
PB0-H20	108	8	GPS Reflection	Only 7 locations, multiple instruments at each
SCAN	211	19	Dielectric	Agricultural locations
SNOTEL	415	19	Dielectric	Western US, mostly high altitude locations
SOILSCAPE	135	20	Dielectric	Mostly western US
USCRN	114	15	Dielectric	
USDA-ARS	4	8	Dielectric	

^{*} http://ismn.geo.tuwien.ac.at/

^{**} Also North American Soil Moisture Data Bank – results not quite ready

Distribution of ISMN data over CONUS

Global Models Used ~30 years for each, covering ~1980s-2000s

	"Offline" Land model simulations	Free-running GCMs (unconstrained)	Atmospheric Reanalyses (constrained by DA)
NCEP/ EMC	Global LDAS All gridded observational forcing Noah2.7 land model 1°x1°	CFS Seasonal Forecasts initialized from CFSR Noah2.7 land model (T126) 0.94°x0.95°	Coupled Forecast System Reanalysis CFSv2 AGCM Noah2.7 land model (T384) 0.31°x0.37°
NASA/ GSFC/ GMAO	MERRA-Land MERRA + GPCP forcing Catchment land model 0.67°x0.5°	GEOS5 "AMIP" Simulation run in MERRA-2 mode Catchment land model 0.67°x0.5°	MERRA GEOS5 AGCM Catchment land model 0.67°x0.5°
ECMWF	Earth2Observe WFDEI gridded forcing HTESSEL land model 0.5°x0.5°	Athena Project IFS "AMIP" Annual Forecasts HTESSEL land model (T1279) 0.14°x0.14°	ERA-Interim Reanalysis IFS AGCM HTESSEL land model 0.75°x0.75°
VCAR	Global offline <i>Qian et al. forcing</i> CLM4.0-SP land model	CCSM4 Seasonal Forecasts initialized from CMIP Branch run CLM4.0-CN land model	none

1.25°x0.9°

1.25°x0.9°

Z

Global Models Used

~30 years for each, covering ~1980s-2000s

"Offline" Land model **Free-running GCMs** (unconstrained) simulations **Global LDAS CFS** sonal For All gridded observational forma Noah2.7 land model 1°x1° MERRA All results MERRA + GPCP Catchment land moo for JJA only **ECMWF** Earth20bserv WFDEI gridded alron HTESSEL d model 0.5° x 0.5° 1279) 0.14°x0.14° Global offline **CCSM4 Seasonal Forecasts** NCAR Qian et al. forcing initialized from CMIP Branch run CLM4.0-SP land model CLM4.0-CN land model

1.25°x0.9°

Atmospheric Reanalyses (constrained by DA)

Coupled Forecast System Reanalysis
CFSv2 AGCM
Noah2.7 land model
(T224) 2.31°x0.37°

MERRA
GEOS5 AGCM
Catchment land model
0.67°x0.5°

ERA-Interim Reanalysis
IFS AGCM
HTESSEL land model
0.75°x0.75°

--none--

1.25°x0.9°

Soil Layer 2 0.018-0.045m 30 15 10 7 4 2 -2 -4 -7 -10

- Dots = bias at each station
- Bars next to colors = distribution of biases

Soil Layer 2 0.018-0.045m 30 15 10 7 4 2 -2 -4 -7 -10

- Dots = bias at each station
- Bars next to colors = distribution of biases
- Too little persistence of soil moisture anomalies in surface layers.

Soil Layer 2 0.018-0.045m 30 15 10 7 4 2 -2 -4 -7 -10

- Dots = bias at each station
- Bars next to colors = distribution of biases
- Too little persistence of soil moisture anomalies in surface layers.
- Switches over to too much persistence at deep layers.

Soil Layer 2 0.018-0.045m 823 Stations 0.166-0.289m Soil Layer 5 668 Stations Soil Layer 7 0.493-0.829m

- Dots = bias at each station
- Bars next to colors = distribution of biases
- Too little persistence of soil moisture anomalies in surface layers.
- Switches over to too much persistence at deep layers.
- In between, average bias not bad, but distribution is poor.

Soil Layer 2 0.018-0.045m 15 823 Stations Soil Layer 5 0.166-0.289m 668 Stations Soil Layer 7 0.493-0.829m 30 15 580 Stations 580 Stations 580 Stations 580 Stations

Offline CLM4: τ

 Excessive persistence is even more prevalent, sets in at shallower depths.

10 12 15 20 30 60 DAYS

Offline CLM4: τ

- Excessive persistence is even more prevalent, sets in at shallower depths.
- Scale differences (point measurements vs grid boxes) and random measurement error do contribute to these biases we are working to understand how much they impact results.

Soil Layer 2 0.018-0.045m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045842 Stations Soil Layer 5 0.166-0.289m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045681 Stations Soil Layer 7 0.493-0.829m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045598 Stations .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Offline CLM4: o

 Mean biases are not bad – all levels have about the right day-to-day variability during JJA.

Soil Layer 2 0.018-0.045m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045842 Stations 0.166-0.289m Soil Layer 5 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045681 Stations 0.493-0.829m Soil Layer 7 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045598 Stations .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Offline CLM4: o

- Mean biases are not bad all levels have about the right day-to-day variability during JJA.
- Some issues in spatial variability
 - Maximum over central Great Plains appears to be too strong

Soil Layer 2 0.018-0.045m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045842 Stations 0.166-0.289m Soil Layer 5 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045681 Stations 0.493-0.829m Soil Layer 7 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045598 Stations .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Offline CLM4: o

- Mean biases are not bad all levels have about the right day-to-day variability during JJA.
- Some issues in spatial variability
 - Maximum over central Great Plains appears to be too strong
 - Too little variability over inter-mountain
 West (mostly SNOTEL sites could be an altitude bias on top of other biases)

Offline CLM4: σ

- Mean biases are not bad all levels have about the right day-to-day variability during JJA.
- Some issues in spatial variability
 - Maximum over central Great Plains appears to be too strong
 - Too little variability over inter-mountain
 West (mostly SNOTEL sites could be an altitude bias on top of other biases)
 - No doubt that local soil properties are not matching coarse CLM data set.

Soil Layer 2 0.018-0.045m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045842 Stations Soil Layer 5 0.166-0.289m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045681 Stations Soil Layer 7 0.493-0.829m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045598 Stations .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

CLM4+CCSM4: σ

• When coupled to the GCM, CLM4 variability drops significantly.

Soil Layer 2 0.018-0.045m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045842 Stations Soil Layer 5 0.166-0.289m 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045681 Stations 0.493-0.829m Soil Layer 7 0.045 0.035 0.025 0.015 0.005 -0.005-0.015-0.025-0.035-0.045598 Stations .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

- When coupled to the GCM, CLM4 variability drops significantly.
- Why?

Conclusions

- Enough observational data becoming available to begin confronting our weather and climate models regarding their coupled land-atmosphere behavior.
- Here: only soil moisture memory and variability.

Conclusions

- Enough observational data becoming available to begin confronting our weather and climate models regarding their coupled land-atmosphere behavior.
- Here: only soil moisture memory and variability.
- Admittedly, a straight-up comparison is not fair
 - Spatial scale differences point measurements vs. model grid box
 - Instrument error increases σ , decreases τ ; while model data are "perfect" in the statistical sampling sense. Must account for this too!

Conclusions

- Enough observational data becoming available to begin confronting our weather and climate models regarding their coupled land-atmosphere behavior.
- Here: only soil moisture memory and variability.
- Admittedly, a straight-up comparison is not fair
 - Spatial scale differences point measurements vs. model grid box
 - Instrument error increases σ , decreases τ ; while model data are "perfect" in the statistical sampling sense. Must account for this too!
- We may ultimately be able to attribute some biases
 - Soil parameter errors
 - GCM meteorological biases (esp. precipitation and radiation)
 - Poor LSM parameterizations (e.g., suggested by PLUMBR)

In Process:

- Added many more networks for CONUS from NASMDB http://soilmoisture.tamu.edu/ – approaching 2000 stations.
- We are looking at the scaling and measurement error issues.
- To examine coupled sensitivity, need co-located fluxes, surface met (FLUXNET, ARM); would love atmospheric soundings as well.
 - Full LaThuile FLUXNET data set will be examined over US and global
 - Collaboration with J. Santanello (NASA/GSFC) for access to ARM data
- Recent community workshops on coupled L-A issues:

http://www.iges.org/lsm/

http://inside.mines.edu/~thogue/nsf-hydro-atmo-workshop/

Models σ vs. Station Observations

 Have not accounted for scale differences (working on it).

Models of vs. Station Observations

- Have not accounted for scale differences (working on it).
- (working on it).

 Correlations decline with depth (arrows point from shallow to deep layers).

Models of vs. Station Observations

- Have not accounted for scale differences (working on it).
- (working on it).

 Correlations decline with depth (arrows point from shallow to deep layers).
- Biases generally negative, more so at depth – in part a scaling issue.

Models τ vs. Station Observations

 Memory defined as time when lagged autocorrelation drops to 1/e.

Models τ vs. Station Observations

- Memory defined as time when lagged autocorrelation drops to 1/e.
- US spatial correlations poor for all models, ~zero at depth.

Models τ vs. Station Observations

- Memory defined as time when lagged autocorrelation drops to 1/e.
- US spatial correlations poor for all models, ~zero at depth.
- Model biases not bad at surface (controlled by precip), much too long at depth.

