

Dynamic Roots in CLM: a new approach for root distribution

Beth Drewniak

Motivation

- Roots are responsible for water and nutrient uptake
- Important drivers of above ground processes
 - photosynthesis and transpiration
- Key component in carbon, nutrient, and water cycling
- So why is root distribution static when above ground vegetation component has time-varying structure?

Roots respond to their environment

Dynamic root scheme

- Two Parts:
 - Root fraction (density)
 - Rooting depth (crops only)
- Crop roots grow linearly with Growing Degree Days (GDDs), maximum depth at grain fill
- Root Depth for Crops:
 - Maize: 1.2 m
 - Wheat: 0.9 m
 - Soybean: 1.6 m

Root Fraction Weight Factors

Coarse Wood

Litter 1

000

Litter r

Soil 1

°°0

Soil n

First, calculate the water stress in the root zone:

$$w_{limit} = \sum \frac{\log\left(\frac{minpsi}{psi}\right)}{\log\left(\frac{minpsi}{maxpsi}\right)} * fr$$

Next calculate the water (rswa) and nitrogen (rsmn) availability in each soil layer:

$$rswa_{j} = \frac{\log{(\frac{minpsi}{psi})}}{\log{(\frac{minpsi}{maxpsi})}} * dz_{j}$$

 $rsmn_j = sminn_vr_j$

Calculating Root Fraction

Finally, calculate the root density in each soil layer:

$$\rho_j = C * fr + C_{new} * \left(\left(1 - w_{limit} \right) * \frac{rswa}{\sum rswa} + w_{limit} * \frac{rsmn}{\sum rsmn} \right) - C_{lost} * fr$$

And convert to the new root fraction:

$$fr = \frac{\rho_j}{\sum \rho_j}$$

Taking advantage of the new biogeochemistry model (BGC) with vertically resolved carbon/nitrogen/water, this root distribution can pull nitrogen and water from the correct layer(s) of the soil profile.

Boreal Forest

Root density and nutrients (Boreal)

Grass (Boreal)

Tropical Evergreen

Root density and nutrients (BET Tropical)

Temperate Evergreen

Root density and nutrients (NET Temperate)

Temperate Deciduous

Root density and nutrients (BDT Temperate)

Grass

Root density and nutrients (Grass)

Crops

Root density and nutrients (Crop)

Still to do...

This is a work in progress

- Roots strongly follow the nutrients
- Results in shallow root profiles
 - Great for arctic
 - Poor root distribution everywhere else
 - Crops need help
- Can tweak the weight algorithm some
 - More weight on water distribution
 - Alternative nitrogen profile (worked in CLM3.5)

Nutrient Concentration g/m³

