NGEE (Next Generation Ecosystem Experiment) in the Tropics What, why, where, when, who, how?

Office of

Science

NEXT GENERATION ECOSYSTEM EXPERIMENT - TROPICS

Office of Science

WHAT?

GRAND DELIVERABLE

A representative, **process-rich** tropical forest ecosystem model, extending from **bedrock** to the top of the vegetative canopy**atmosphere** interface, in which the evolution and feedbacks of tropical ecosystems in a changing climate can be modeled at the scale/ resolution of a next generation Earth System Model grid cell (~10 x 10 km² resolution)

Threat to carbon sink

Widespread decline of Congo rainforest greenness in the past decade

Liming Zhou¹, Yuhong Tian², Ranga B. Myneni³, Philippe Ciais⁴, Sassan Saatchi⁵, Yi Y. Liu⁶, Shilong Piao⁷, Haishan Chen⁸, Eric F. Vermote⁹, Conghe Song^{10,11} & Taehee Hwang¹²

Research Priorities for Tropical

Ecosystems Under Climate Change

Workshop Repor

NGEE-T will be **PAN-TROPICAL**

We will use data from existing known Forest Observation Networks (FORESTGEO, RAINFOR, TRY, GLOPNET ETC.)

Early pilot studies in Manaus, Puerto Rico, and Panama

Future sites determined by uncertainty analysis

WHEN?

- NGEE is a solicited a **10 year** activity.
- The Phase I (3y) proposal is at the final review stage.
 - (Comments due by the end of this week)

WHO?

MODULAR "MULTI-PHYSICS" APPROACH

TAKING OFF THE TRAINING WHEELS PROPERTIES OF VEGETATION MODELS WITHOUT CLIMATE ENVELOPES

Rosie Fisher NCAR &

Stefan Muszala, Mariana Vertenstein, Chonggang Xu, Nate McDowell, Charlie Koven, Ryan Knox, Jennifer Holm, Peter Lawrence, David Lawrence, Gordon Bonan

... WHAT TRAINING WHEELS?

Paradigm:

Vegetation climate limits are a function of simple climate variables, defined from current distributions

Climate envelope parameterization from Lund-Potsdam-Jena (LPJ) DGVM (vegetation cannot survive outside limits)

Used in: ORCHIDEE (IPSL), CTEM (CanESM) SEIB (MIROC-ESM), CLM-DV (CESM)

	Temp coldest month Temp hottest month Growing Degree Days		
Plant Functional Type	(°C)	(°C)	(°C)
Tropical broad-leaved evergreen	15.5	_	_
Tropical broad-leaved raingreen	15.5	-	-
Temperate needle-leaved evergreen	-2.0	22.0	900
Temperate broad-leaved evergreen	3.0	18.8	1200
Temperate broad-leaved summergreen	-17.0	15.5	1200
Boreal needle-leaved evergreen	-32.5	-2.0	600
Boreal needle-leaved summergreen	-	-2.0	350
Boreal broad-leaved summergreen	-	-2.0	350
Temperate herbaceous (TeH)	-	15.5	-
Tropical herbaceous (TrH)	15.5	-	-

Climate envelope models have circular logic

Vegetation climate limits might change as CO2 increases

Is it probably not reasonable to assume that all plants of one class have the same climate tolerances

HOW TO PROCEED?

The Ecosystem Demography model* we have integrated into the CLM:

- Has no climatic envelopes
- Can be parameterized directly from plant trait data
- Predicts plant distribution as an outcome of performance
- We can in theory use CLM(ED) for testing hypotheses of vegetation distribution.

*Moorcroft et al. 2001; Fisher et al. 2010; Fisher et al. in prep

What can we observe about vegetation distribution?

AVHRR Vegetation Continuous Fields. De Fries et al. 2000

The worldwide leaf economics spectrum

Ian J. Wright¹, Peter B. Reich², Mark Westoby¹, David D. Ackerly³, Zdravko Baruch⁴, Frans Bongers⁵, Jeannine Cavender-Bares⁶, Terry Chapin⁷, Johannes H. C. Cornelissen⁸, Matthias Diemer⁹, Jaume Flexas¹⁰, Eric Garnier¹¹, Philip K. Groom¹², Javier Gulias¹⁰, Kouki Hikosaka¹³, Byron B. Lamont¹², Tali Lee¹⁴, William Lee¹⁵, Christopher Lusk¹⁶, Jeremy J. Midgley¹⁷, Marie-Laure Navas¹¹, Ülo Niinemets¹⁸, Jacek Oleksyn^{2,19}, Noriyuki Osada²⁰, Hendrik Poorter²¹, Pieter Poot²², Lynda Prior²³, Vladimir I. Pyankov²⁴, Catherine Roumet¹¹, Sean C. Thomas²⁵, Mark G. Tjoelker³⁶, Erik J. Veneklaas²² & Rafael Villar⁷⁷

LEAF CONSTRUCTION HAS A 3-WAY TRADE OFF:

Hypothesis: The relative carbon economy of deciduous vs. evergreen habits can predict biome boundaries

Evergreen Needleleaf Deciduous Broadleaf

Question: Does how you sample the trait space matter?

CONTROL

INITIAL LEAF BIOMASS

Leaf area index (I_{tree}) is a function of tree diameter, and leaf mass per area (M_a)

INITIAL LEAF BIOMASS

Higher *M*_a causes lower leaf area index

INITIAL LEAF BIOMASS

Add in leaf mass per area $(M_{a,ft})$ based correction factor.

CONTROL + ALLOC

Fraction of evergreen vegetation

CONTROL + Alloc

Total Leaf Area Index

LEAF MAINTENANCE RESPIRATION

CLM4.5 (RYAN ET AL, 1991)

 $\mathsf{Imr}_{\scriptscriptstyle{\mathsf{top}},\mathsf{25}} = N_{\scriptscriptstyle{\mathsf{area}}} \cdot b_{\scriptscriptstyle{\mathsf{resp}}}$

=0.257 gC gN⁻¹ s⁻¹

CLM4.5(ED) (ATKIN ET AL. 2015) for BDT $\log_{10}(Imr_{top,25,BDT}) = \log_{10}(N_{area}) \cdot 1.134 - 0.300$ ~0.536 gC gN⁻¹ s⁻¹ and for NET $\log_{10}(Imr_{top,25,NET}) = \log_{10}(N_{area}) \cdot 1.005 - 0.346$ ~0.452 gC gN⁻¹ s⁻¹

ATKIN ET AL. 2015

Total Leaf Area Index

RYAN ET AL, 1991

Total Leaf Area Index

Control + Alloc

+ Resp

е

Obs

Fraction of evergreen vegetation

LEAF TURNOVER VS. TEMPERATURE

Is leaf lifespan dictated by construction cost, or the environment?

ROOT TURNOVER VS. TEMPERATURE

BDT $\log_{10}(Imr_{top,25,BDT}) = \log_{10}(N_{area}) \cdot 1.134 - 0.300$

ENT $\log_{10}(Imr_{top,25,NET}) = \log_{10}(N_{area}) \cdot 1.005 - 0.346$

(Data extracted from) Gill & Jackson 2000 Control + Alloc

+ Resp

е

Obs

Fraction of evergreen vegetation

е

m

0

р

n

Fraction of evergreen vegetation

р

Fraction of evergreen vegetation

Conclusions

- Carbon economy of leaf habit can, in some cases, predict biome boundaries
- How we use plant trait data matters for vegetation dynamics predictions.
- Naïve use of plant trait databases does not necessarily lead to skillful prediction
- Parametric and structural ensembles are both informative for understanding cause & effect in model predictions.