

REPRESENTING ISOHYDRICITY AND ANISOHYDRICITY IN CLM: A PROTOTYPE STUDY

Daniel Kennedy, Pierre Gentine, Columbia University

- Background on plant water dynamics
- Isohydric versus Anisohydric species
- Simplified soil-plant-atmosphere-continuum model
- Preliminary results from the model

Plant Water Dynamics

- How does water move within the SPAC?
- Important for:
 - Soil Moisture
 - Boundary Layer
 - Carbon Cycle
 - •••

Plant Water Dynamics

- How does water move in the SPAC?
- Water fluxes are driven by gradients in water potential
- Water fluxes modeled by

 $q = k(\Psi_1 - \Psi_2)$

Plant Water Stress, $\beta \sim f(\Psi \text{ soil})$

□ Interest in plant water stress, which is applied through β □ $\beta = \frac{E_{actual}}{E_{potential}}$

$$\Box \quad \text{In CLM} \quad \beta = f(\Psi_{soil})$$

□ β < 1 with stomatal closure or cavitation

Isohydric vs. Anisohydric species

NCAR - LMWG Presentation – Daniel Kennedy March 2, 2015

Plant Water Stress, $\beta \sim f(\Psi \text{ stomata})$

7

We change beta dependence to

 $\beta = f(\Psi_{stomata})$

Model Development

 Simple model to resolve Ψ along the SPAC
 Forced by Ψ_{soil} and E_{potential}
 Water stress imposed by β, as a

function of $\Psi_{stomata}$

Model results: Example Drydown

Anisohydric, $\beta \sim f(\Psi \text{ soil})$

- □ How does β (plant water stress) depend on Ψ_{soil} ?
- How do our model's findings compared to CLM?
- Beta>0 beyond typical parameterization

Model results: Isohydric

- □ How does β (plant water stress) depend on Ψ_{soil} ?
- How do our model's findings compared to CLM?
- Very similar to CLM

Model results: Isohydric

- How does β (plant water stress) depend on Ψ_{soil} ?
- What happens when we vary potential transpiration?
- Can a well-watered plant have water stress?

$$E \propto k_s (\Psi_{soil} - \Psi_{stomata})$$

NCAR - LMWG Presentation – Daniel Kennedy March 2, 2015

- Can a well-watered plant have water stress?
- Midday potential transpiration
 high relative to conductance
- □ Here β =0.88 at the peak of potential transpiration

$$E \propto k_s (\Psi_{soil} - \Psi_{stomata})$$

Conclusions and further work

- Informative to resolve water transport through the plant due to variable plant water strategies
- Plants liable to water stress both from soil and from atmosphere
- Next steps
 - Further model development
 - Couple to boundary layer model

Questions?

