Drivers of interannual variability in atmospheric CO₂ across CMIP5 and implications for future feedbacks

Gretchen Keppel-Aleks University of Michigan <u>gkeppela@umich.edu</u>

CLM and BGCWG meeting March 2015

Variations in CO_2 owe to a combination of tropical and northern hemisphere climate and human drivers.

Keppel-Aleks et al., 2014

Variability is preferentially attributed to temperature, as CO₂ observations are aggregated in time and space

Keppel-Aleks et al., 2014

Short term carbon cycle variability may constrain predictions of long-term feedbacks

Short term carbon cycle variability may constrain predictions of long-term feedbacks

Coverage by the NOAA cooperative sampling network has expanded with time

Observational density has increased, yielding improved meridional coverage

Interannual variability in the CO₂ growth rate can be calculated at annual or monthly timescales

Interannual variability in the CO₂ growth rate can be calculated at annual or monthly timescales

The temperature sensitivity of the CO₂ growth rate depends on period sampled

In the real world, we cannot observe carbon fluxes at global or regional scales

Interannual variability in the CO₂ growth rate inferred from models is sensitive to method of computation

Atmospheric transport damps γ_{IAV} values when estimated from annual CO₂ rather than directly from land fluxes

The use of monthly land and atmospheric diagnostic yields largely consistent γ_{IAV} values

The choice of annual vs monthly diagnostics has the largest impact on the calculated γ_{IAV} values

The uncertainty on γ_{IAV} from annual observations exceeds that from monthly observations

The uncertainty on the long-term γ required to produce a χ^2 value of one is larger for land data

A different subset of CMIP5 models are consistent with the observational constraint across four methods

The constraint on γ_{LT} depends on whether model data are averaged monthly or annually

The emergent constraint from a multi-model ensemble is highly dependent on the choice of observational constraint and the treatment of model output

The most likely γ_{LT} value increases by at least 50% when monthly, rather, than annual values are used

No set of models are consistent with observations across four sensitivity tests

Model output should be compatible with observations where possible

Acknolwedgements: NOAA GMD, CMIP5 Archive