Drivers of interannual variability in atmospheric CO-
across CMIP5 and implications for future feedbacks
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Variations in CO; owe to a combination of tropical and northern
hemisphere climate and human drivers.
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Variability is preferentially attributed to temperature, as CO»
observations are aggregated in time and space
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Short term carbon cycle variability may constrain predictions
of long-term feedbacks
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Short term carbon cycle variability may constrain predictions
of long-term feedbacks

Anomaly in d(CO,)/dt (GtC yr )
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Coverage by the NOAA cooperative sampling
network has expanded with time
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Observational density has increased, yielding improved
meridional coverage
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Interannual variability in the CO; growth rate can be
calculated at annual or monthly timescales
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Interannual variability in the CO; growth rate can be
calculated at annual or monthly timescales
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The temperature sensitivity of the CO; growth rate
depends on period sampled
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In the real world, we
cannot observe carbon
fluxes at global or
regional scales



Interannual variability in the CO, growth rate inferred from
models is sensitive to method of computation
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Atmospheric transport damps Yiav values when estimated from
annual CO; rather than directly from land fluxes
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The use of monthly land and atmospheric diagnostic yields
largely consistent Yav values
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The choice of annual vs monthly diagnostics has the largest
impact on the calculated Yav values
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The uncertainty on Yiav from annual observations exceeds tha
from monthly observations
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The uncertainty on the long-term Y required to produce a X?
value of one is larger for land data
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A different subset of CMIP5 models are consistent with the
observational constraint across four methods
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The constraint on Y.t depends on whether model data are
averaged monthly or annually
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The emergent constraint from a multi-model ensemble is highly
dependent on the choice of observational constraint and the
treatment of model output

The most likely Y.t value increases by at least 50% when monthly,
rather, than annual values are used

No set of models are consistent with observations across four
sensitivity tests

Model output should be compatible with observations where
possible

Acknolwedgements: NOAA GMD, CMIP5 Archive



