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Variability is preferentially attributed to temperature, as CO2 
observations are aggregated in time and space
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ensemble members, which were produced by perturbing only para-
meters in the land carbon-cycle component of the model13, span an
even larger range (5.6–14.4 GtC yr21 K21), suggesting that uncertain-
ties in the modelling of the tropical land carbon cycle are critical.

Most importantly, these differing IAV sensitivities are strongly cor-
related (r 5 0.98, P 5 0.0005) with variations in cLT across C4MIP
models (black labels in Fig. 3a). The dashed red line in Fig. 3a shows
the best-fit straight line relating these variables for the six C4MIP
GCMs (although in principle a well-defined nonlinear function would
also yield an emergent constraint). The red labels in Fig. 3a show how
well this relationship would have predicted the variation in cLT for the
three HadCM3 ensemble members given the IAV sensitivity of each.
We note that two of the HadCM3 variants have cLT values beyond the
range of the C4MIP models, but that the extrapolated straight line is
nevertheless able to fit these outliers. The dotted vertical black lines in
Fig. 3a show the IAV sensitivity (61 s.d.), as previously estimated from
the contemporary observations, from which we derive tighter bounds
on cLT.

With the model-derived relationship between cLT and the IAV
sensitivity, we can use the observational constraint to estimate a proba-
bility density function (PDF) for cLT (Methods). Figure 3b compares
this with the PDF arising from assuming that all C4MIP models are
equally likely to be true and come from an underlying Gaussian dis-
tribution (red line). The emergent constraint from the IAV sensitivity
of the CO2 growth rate sharpens the PDF of cLT and moves its peak to a
less negative value (253 6 17 as opposed to 269 6 39 GtC K21). The
application of the IAV constraint reduces the estimated probability of
cLT values more negative than 2100 GtC K21, typically associated with
models that project CO2-induced tropical forest dieback, by almost
two orders of magnitude from 21% to 0.24%.

The IAV constraint also gives strong confirmation that tropical land
carbon is vulnerable to warming caused by non-CO2 forcing factors11.
Remaining uncertainties in tropical land climate–carbon-cycle feed-
backs are therefore the magnitude of long-term CO2 ferti-
lization effects in the tropics, and the extent to which future climate
change will be caused by non-CO2 factors.

METHODS SUMMARY
We used results from six of the eleven models used in C4MIP3. The five excluded
models consisted of four Earth-system models of intermediate complexity, which
do not typically generate internal variability as required to define the interannual
sensitivity of the CO2 growth rate to tropical temperature anomalies, and one
GCM (LLNL), which reported zonal mean land temperatures rather than zonal
mean (land and ocean) temperatures. Outputs from the remaining six models
were reported as annual means for each 30u latitudinal band (available at https://

c4mip.lsce.ipsl.fr/diagnostics_phase2.html). We combined the outputs from the
30uN–0u and 0u–30u S bands to define the projected changes for the 30uN–30u S
‘tropical’ band.

Models G, H and I in this study, which are used to test the emergent constraint
derived from the C4MIP models, come from a land carbon-cycle ensemble carried
out with the HadCM3C model14. HadCM3C is similar to C4MIP model A
(HadCM3LC) but includes a higher-resolution ocean model (1.25u3 1.25u rather
than 2.5u3 3.75u) and interactive atmospheric sulphur-cycle chemistry.
Seventeen HadCM3C ensemble members were defined by perturbations to key
land surface parameters including leaf nitrogen concentrations and the temper-
ature sensitivities of photosynthesis and soil respiration14. All ensemble members
were driven by the SRES A1B emissions scenarios, including changes in non-CO2

forcing factors (most notably changes in anthropogenic sulphate aerosols10).
Uncoupled simulations were carried out only for the standard parameter values
(HadCM3-st), and the ensemble members leading to the lowest (HadCM3-a) and
highest (HadCM3-h) global carbon-cycle feedbacks. We therefore focused on
these three variants of HadCM3C in this study.

The analysis of the model outputs and observational data, and the statistical
methods employed are outlined in Methods.

Full Methods and any associated references are available in the online version of
the paper.
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Figure 3 | Emergent constraint on the sensitivity of tropical land carbon to
climate change. a, Climate sensitivity of tropical land carbon (cLT) versus the
sensitivity of the CO2 growth rate to tropical temperature, for each of the
models shown in Table 1. The dashed line shows the best-fit straight line across
the C4MIP models (black). The red symbols represent a test of this relationship
against the three HadCM3C ensemble members. The dot–dash lines indicate
the constraint on the observed IAV in the CO2 growth rate derived from Fig. 2b.
b, PDF for the climate sensitivity of cLT. The black line was derived by applying
the IAV constraint to the across-model relationship shown in a. The red line
shows the ‘prior’ PDF that arises from assuming that all of the C4MIP models
are equally likely to be correct and that they come from a Gaussian distribution.
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Short term carbon cycle variability may constrain predictions 
of long-term feedbacks

over a factor of more than four, from 229 GtC K21 (model F) to
2133 GtC K21 (model A), with a C4MIP mean of 269 GtC K21 and
standard deviation of 39 GtC K21. This range is even larger if the
HadCM3 ensemble members are included. We therefore focus on
reducing the larger uncertainty, namely that in cLT.

Our inspiration for deriving a multi-model emergent constraint
comes from a recent study that showed a strong relationship between
the contemporary temperature sensitivity of seasonal snow cover and
the magnitude of the snow–albedo feedback, across more than 20
GCMs7. Because the seasonal cycle of snow cover can be estimated
from observations, this model-derived relationship converts the con-
temporary observations to a constraint on the size of the snow–albedo
feedback in the real climate system, for which there is no direct reliable
measurement. Emergent constraints of this type make use of the often
bewildering spread among Earth-system model projections to reduce
uncertainties in the sensitivities of the real Earth system to anthro-
pogenic forcing. They are distinct and complementary to bottom-up
constraints arising from process-based studies.

It made sense a priori to look for an emergent constraint linking the
sensitivity of tropical land carbon to interannual variability (IAV) in
the growth rate of atmospheric CO2. Tropical land carbon changes in
response to climate through changes in the net land–atmosphere CO2

flux into and out of this carbon store. Critically, the sensitivity of this
net tropical CO2 flux is revealed by the IAV in the CO2 growth rate,
because this is known to be dominated by the response of the tropical
land carbon cycle to climatic anomalies (Supplementary Fig. 1a) such
as the El Niño/Southern Oscillation8,24,25. Hence, some relationship
between the IAV in CO2 and the longer-term sensitivity of tropical
land carbon storage to climate change (cLT) is to be expected, as long as
processes that are not evident in the short-term variation of the CO2

fluxes (for example forest dynamics or changes in long-lived soil car-
bon pools) do not dominate the long-term response. This is our

working hypothesis to be tested against the C4MIP models, which
include a range of representations of slow vegetation and soil processes3.

Figure 2a compares the observed IAV in the growth rate of global
atmospheric CO2 (refs 26, 27) with the IAV in the annual mean trop-
ical temperature28. In both cases, we have chosen observational vari-
ables (global mean atmospheric CO2 and mean land-plus-ocean
temperature between 30uN and 30u S) for consistency with the vari-
ables available from the C4MIP models. Aside from the years imme-
diately after the volcanic eruptions24 of Mount Agung, El Chichon and
Mount Pinatubo, the IAV in the growth rate of atmospheric CO2 is
linearly correlated with the IAV in the tropical temperature (r 5 0.65
(correlation coefficient), P , 0.0001; Fig. 2b), with a best-fit ‘IAV sensi-
tivity’ of 5.1 6 0.9 GtC yr 21 K21. Excluding these volcano-affected
years has an impact on the best-fit sensitivity of less than 5%, but avoids
the complication of diffuse-light fertilization of plant growth29, which
is not included in any of the C4MIP models. We also find a similar
sensitivity regardless of which tropical temperature reconstruction we
use. There is a greater sensitivity to the choice of the global atmospheric
CO2 data set, but this does not affect our overall conclusions (Sup-
plementary Table 1).

A similar calculation is made for each of the coupled climate–
carbon-cycle models, to derive the sensitivity of the CO2 growth rate
to tropical temperature for the period 1960–2010. Compared with the
observational data, models tend to overestimate the IAV in the tropical
temperature by a factor of up to two, and to overestimate the IAV in
the CO2 growth rate by a factor of up to three. The correlation between
these variables is underestimated in some models (F, B and D) and
overestimated in others (A, E and C). Hence, IAV sensitivity varies
across the C4MIP model ensemble, from 2.9 6 1.4 GtC yr21 K21

(model F) to 9.7 6 0.7 GtC yr21 K21 (model A), with most of this
range resulting from differences in the sensitivity of heterotrophic
respiration to climate (Supplementary Fig. 1b). The three HadCM3

Table 1 | Summary data for climate-carbon cycle projections
Model Change in global atmospheric CO2 (p.p.m.v.) Change in tropical land carbon (GtC) Change in tropical temperature (K)

Coupled Uncoupled Coupled Uncoupled

A HadCM3LC 689 477 211 354 3.93
B IPSL 453 381 177 365 2.70
C MPI 524 443 242 413 4.36
D CCSM1 483 465 319 364 1.53
E FRCGC 589 465 118 271 3.61
F LOOP 489 460 185 263 3.30
G HadCM3C-st 599 331 2148 317 4.41
H HadCM3C-a 445 333 26 168 3.76
I HadCM3C-h 589 246 2165 251 4.08

Changes in atmospheric CO2, tropical land carbon and tropical near-surface air temperature (30uN–30uS), as simulated by the nine climate–carbon GCMs analysed in this study. Models A to F are from the C4MIP
study3, which prescribed the SRES A2 CO2 emissions scenario. For these models, the changes are calculated over the period 1960–2099.Models G to I are from a land carbon-cycle parameter ensemble carried out
with the HadCM3 model under the SRES A1B scenario14, and were run only to 2080, so differences here are for 1960 to 2080. In all cases, model runs were carried out both including and excluding climate effects
on the carbon cycle (‘coupled’ and ‘uncoupled’, respectively), so that the impacts of climate–carbon-cycle feedbacks could be diagnosed.
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Figure 1 | Projected changes in land carbon storage in the tropics from
coupled climate–carbon-cycle models. a, Upper and lower estimates from the
C4MIP models3 (A–F in Table 1) for uncoupled (black lines) and coupled
simulations (red lines). b, Impact of changes in tropical temperature versus
impact of changes in atmospheric CO2 on tropical land carbon, for the C4MIP
models (black letters) and three variants of the HadCM3C model14 (red letters).
The horizontal lines represent the new constraint presented in this study.
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atmospheric CO2 and tropical temperature. a, Annual anomalies in CO2
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individual years in a and the dashed line showing the best-fit straight line, which
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ensemble members, which were produced by perturbing only para-
meters in the land carbon-cycle component of the model13, span an
even larger range (5.6–14.4 GtC yr21 K21), suggesting that uncertain-
ties in the modelling of the tropical land carbon cycle are critical.

Most importantly, these differing IAV sensitivities are strongly cor-
related (r 5 0.98, P 5 0.0005) with variations in cLT across C4MIP
models (black labels in Fig. 3a). The dashed red line in Fig. 3a shows
the best-fit straight line relating these variables for the six C4MIP
GCMs (although in principle a well-defined nonlinear function would
also yield an emergent constraint). The red labels in Fig. 3a show how
well this relationship would have predicted the variation in cLT for the
three HadCM3 ensemble members given the IAV sensitivity of each.
We note that two of the HadCM3 variants have cLT values beyond the
range of the C4MIP models, but that the extrapolated straight line is
nevertheless able to fit these outliers. The dotted vertical black lines in
Fig. 3a show the IAV sensitivity (61 s.d.), as previously estimated from
the contemporary observations, from which we derive tighter bounds
on cLT.

With the model-derived relationship between cLT and the IAV
sensitivity, we can use the observational constraint to estimate a proba-
bility density function (PDF) for cLT (Methods). Figure 3b compares
this with the PDF arising from assuming that all C4MIP models are
equally likely to be true and come from an underlying Gaussian dis-
tribution (red line). The emergent constraint from the IAV sensitivity
of the CO2 growth rate sharpens the PDF of cLT and moves its peak to a
less negative value (253 6 17 as opposed to 269 6 39 GtC K21). The
application of the IAV constraint reduces the estimated probability of
cLT values more negative than 2100 GtC K21, typically associated with
models that project CO2-induced tropical forest dieback, by almost
two orders of magnitude from 21% to 0.24%.

The IAV constraint also gives strong confirmation that tropical land
carbon is vulnerable to warming caused by non-CO2 forcing factors11.
Remaining uncertainties in tropical land climate–carbon-cycle feed-
backs are therefore the magnitude of long-term CO2 ferti-
lization effects in the tropics, and the extent to which future climate
change will be caused by non-CO2 factors.

METHODS SUMMARY
We used results from six of the eleven models used in C4MIP3. The five excluded
models consisted of four Earth-system models of intermediate complexity, which
do not typically generate internal variability as required to define the interannual
sensitivity of the CO2 growth rate to tropical temperature anomalies, and one
GCM (LLNL), which reported zonal mean land temperatures rather than zonal
mean (land and ocean) temperatures. Outputs from the remaining six models
were reported as annual means for each 30u latitudinal band (available at https://

c4mip.lsce.ipsl.fr/diagnostics_phase2.html). We combined the outputs from the
30uN–0u and 0u–30u S bands to define the projected changes for the 30uN–30u S
‘tropical’ band.

Models G, H and I in this study, which are used to test the emergent constraint
derived from the C4MIP models, come from a land carbon-cycle ensemble carried
out with the HadCM3C model14. HadCM3C is similar to C4MIP model A
(HadCM3LC) but includes a higher-resolution ocean model (1.25u3 1.25u rather
than 2.5u3 3.75u) and interactive atmospheric sulphur-cycle chemistry.
Seventeen HadCM3C ensemble members were defined by perturbations to key
land surface parameters including leaf nitrogen concentrations and the temper-
ature sensitivities of photosynthesis and soil respiration14. All ensemble members
were driven by the SRES A1B emissions scenarios, including changes in non-CO2

forcing factors (most notably changes in anthropogenic sulphate aerosols10).
Uncoupled simulations were carried out only for the standard parameter values
(HadCM3-st), and the ensemble members leading to the lowest (HadCM3-a) and
highest (HadCM3-h) global carbon-cycle feedbacks. We therefore focused on
these three variants of HadCM3C in this study.

The analysis of the model outputs and observational data, and the statistical
methods employed are outlined in Methods.

Full Methods and any associated references are available in the online version of
the paper.
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Figure 3 | Emergent constraint on the sensitivity of tropical land carbon to
climate change. a, Climate sensitivity of tropical land carbon (cLT) versus the
sensitivity of the CO2 growth rate to tropical temperature, for each of the
models shown in Table 1. The dashed line shows the best-fit straight line across
the C4MIP models (black). The red symbols represent a test of this relationship
against the three HadCM3C ensemble members. The dot–dash lines indicate
the constraint on the observed IAV in the CO2 growth rate derived from Fig. 2b.
b, PDF for the climate sensitivity of cLT. The black line was derived by applying
the IAV constraint to the across-model relationship shown in a. The red line
shows the ‘prior’ PDF that arises from assuming that all of the C4MIP models
are equally likely to be correct and that they come from a Gaussian distribution.
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over a factor of more than four, from 229 GtC K21 (model F) to
2133 GtC K21 (model A), with a C4MIP mean of 269 GtC K21 and
standard deviation of 39 GtC K21. This range is even larger if the
HadCM3 ensemble members are included. We therefore focus on
reducing the larger uncertainty, namely that in cLT.

Our inspiration for deriving a multi-model emergent constraint
comes from a recent study that showed a strong relationship between
the contemporary temperature sensitivity of seasonal snow cover and
the magnitude of the snow–albedo feedback, across more than 20
GCMs7. Because the seasonal cycle of snow cover can be estimated
from observations, this model-derived relationship converts the con-
temporary observations to a constraint on the size of the snow–albedo
feedback in the real climate system, for which there is no direct reliable
measurement. Emergent constraints of this type make use of the often
bewildering spread among Earth-system model projections to reduce
uncertainties in the sensitivities of the real Earth system to anthro-
pogenic forcing. They are distinct and complementary to bottom-up
constraints arising from process-based studies.

It made sense a priori to look for an emergent constraint linking the
sensitivity of tropical land carbon to interannual variability (IAV) in
the growth rate of atmospheric CO2. Tropical land carbon changes in
response to climate through changes in the net land–atmosphere CO2

flux into and out of this carbon store. Critically, the sensitivity of this
net tropical CO2 flux is revealed by the IAV in the CO2 growth rate,
because this is known to be dominated by the response of the tropical
land carbon cycle to climatic anomalies (Supplementary Fig. 1a) such
as the El Niño/Southern Oscillation8,24,25. Hence, some relationship
between the IAV in CO2 and the longer-term sensitivity of tropical
land carbon storage to climate change (cLT) is to be expected, as long as
processes that are not evident in the short-term variation of the CO2

fluxes (for example forest dynamics or changes in long-lived soil car-
bon pools) do not dominate the long-term response. This is our

working hypothesis to be tested against the C4MIP models, which
include a range of representations of slow vegetation and soil processes3.

Figure 2a compares the observed IAV in the growth rate of global
atmospheric CO2 (refs 26, 27) with the IAV in the annual mean trop-
ical temperature28. In both cases, we have chosen observational vari-
ables (global mean atmospheric CO2 and mean land-plus-ocean
temperature between 30uN and 30u S) for consistency with the vari-
ables available from the C4MIP models. Aside from the years imme-
diately after the volcanic eruptions24 of Mount Agung, El Chichon and
Mount Pinatubo, the IAV in the growth rate of atmospheric CO2 is
linearly correlated with the IAV in the tropical temperature (r 5 0.65
(correlation coefficient), P , 0.0001; Fig. 2b), with a best-fit ‘IAV sensi-
tivity’ of 5.1 6 0.9 GtC yr 21 K21. Excluding these volcano-affected
years has an impact on the best-fit sensitivity of less than 5%, but avoids
the complication of diffuse-light fertilization of plant growth29, which
is not included in any of the C4MIP models. We also find a similar
sensitivity regardless of which tropical temperature reconstruction we
use. There is a greater sensitivity to the choice of the global atmospheric
CO2 data set, but this does not affect our overall conclusions (Sup-
plementary Table 1).

A similar calculation is made for each of the coupled climate–
carbon-cycle models, to derive the sensitivity of the CO2 growth rate
to tropical temperature for the period 1960–2010. Compared with the
observational data, models tend to overestimate the IAV in the tropical
temperature by a factor of up to two, and to overestimate the IAV in
the CO2 growth rate by a factor of up to three. The correlation between
these variables is underestimated in some models (F, B and D) and
overestimated in others (A, E and C). Hence, IAV sensitivity varies
across the C4MIP model ensemble, from 2.9 6 1.4 GtC yr21 K21

(model F) to 9.7 6 0.7 GtC yr21 K21 (model A), with most of this
range resulting from differences in the sensitivity of heterotrophic
respiration to climate (Supplementary Fig. 1b). The three HadCM3

Table 1 | Summary data for climate-carbon cycle projections
Model Change in global atmospheric CO2 (p.p.m.v.) Change in tropical land carbon (GtC) Change in tropical temperature (K)

Coupled Uncoupled Coupled Uncoupled

A HadCM3LC 689 477 211 354 3.93
B IPSL 453 381 177 365 2.70
C MPI 524 443 242 413 4.36
D CCSM1 483 465 319 364 1.53
E FRCGC 589 465 118 271 3.61
F LOOP 489 460 185 263 3.30
G HadCM3C-st 599 331 2148 317 4.41
H HadCM3C-a 445 333 26 168 3.76
I HadCM3C-h 589 246 2165 251 4.08

Changes in atmospheric CO2, tropical land carbon and tropical near-surface air temperature (30uN–30uS), as simulated by the nine climate–carbon GCMs analysed in this study. Models A to F are from the C4MIP
study3, which prescribed the SRES A2 CO2 emissions scenario. For these models, the changes are calculated over the period 1960–2099.Models G to I are from a land carbon-cycle parameter ensemble carried out
with the HadCM3 model under the SRES A1B scenario14, and were run only to 2080, so differences here are for 1960 to 2080. In all cases, model runs were carried out both including and excluding climate effects
on the carbon cycle (‘coupled’ and ‘uncoupled’, respectively), so that the impacts of climate–carbon-cycle feedbacks could be diagnosed.
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Figure 1 | Projected changes in land carbon storage in the tropics from
coupled climate–carbon-cycle models. a, Upper and lower estimates from the
C4MIP models3 (A–F in Table 1) for uncoupled (black lines) and coupled
simulations (red lines). b, Impact of changes in tropical temperature versus
impact of changes in atmospheric CO2 on tropical land carbon, for the C4MIP
models (black letters) and three variants of the HadCM3C model14 (red letters).
The horizontal lines represent the new constraint presented in this study.
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Figure 2 | Observed relationship between variations in the growth rate of
atmospheric CO2 and tropical temperature. a, Annual anomalies in CO2

growth rate (black) and tropical temperature (red) versus year. b, Sensitivity of
CO2 growth rate to tropical temperature, with numbers representing the
individual years in a and the dashed line showing the best-fit straight line, which
has a gradient of 5.1 6 0.9 GtC yr21 K21. The years in red were not included in
this fit because they directly followed major volcanic perturbations to the climate.
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multiplying the PDF of the observations and the PDF of the regression line. This conditional PDF gives a
sharper peak with slightly less negative values and a much tighter range on the γLT. The conditional PDF gives
γLT = !44 ±!14 GtC/K, whereas the unconditional PDF gives γLT = !49± 40 GtC/K for the CMIP5 models in
the Historical experiment (Figure 5b).

5.2. Comparison With C4MIP Models

To test for robustness, we compare our results to the findings of Cox et al. [2013] who derived a similar
constraint from C4MIP models (Figure 5a, black symbols). The correlation between γLT and γIAV across the
C4MIP (r= 0.98) models is as tight as for the CMIP5models but the slope is slightly different. Most importantly,
the best fit linear regression lines intercept close to the observational range and therefore give a similar
emergent constraint on γLT. The calculated conditional PDF gives !53 ±!17 GtC/K for the C4MIP models as
compared to !44±!14 GtC/K for the CMIP5 ESMs.

6. Summary

An observation-based emergent constraint for the long-term sensitivity of land carbon storage to future
climate warming (γLT) has been derived from an ensemble of eight Earth system models (ESMs) participating
in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). The γLT cannot be directly

Figure 5. (a) The long-term sensitivity of tropical land carbon storage to climate warming (γLT) versus the short-term sen-
sitivity of atmospheric CO2 to interannual temperature variability (γIAV) for the CMIP5 and C4MIP models. The red line
shows the best fit line across the CMIP5 models using the Historical simulation. The vertical dashed lines show the range of
the observed γIAV according to Figure 3. (b) PDF for γLT. The solid line was derived after applying the IAV constraint to the
models while the dashed line is the prior PDF derived purely from the models, before applying the IAV constraint. Red lines
show PDFs for CMIP5 models and black lines and symbols are for C4MIP models. (c and d) Same as Figures 5a and 5b but
with γIAV calculated from the 1%COU simulations.
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Short term carbon cycle variability may constrain predictions 
of long-term feedbacks



Coverage by the NOAA cooperative sampling 
network has expanded with time
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Observational density has increased, yielding improved 
meridional coverage 
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Interannual variability in the CO2 growth rate can be 
calculated at annual or monthly timescales
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Interannual variability in the CO2 growth rate can be 
calculated at annual or monthly timescales
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The temperature sensitivity of the CO2 growth rate 
depends on period sampled 
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In the real world, we 
cannot observe carbon 

fluxes at global or 
regional scales
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Interannual variability in the CO2 growth rate inferred from 
models is sensitive to method of computation
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Atmospheric transport damps γIAV values when estimated from 
annual CO2 rather than directly from land fluxes
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The use of monthly land and atmospheric diagnostic yields 
largely consistent γIAV values
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The choice of annual vs monthly diagnostics has the largest 
impact on the calculated γIAV values
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The uncertainty on γIAV from annual observations exceeds that 
from monthly observations

0

1

2

3 a) Annual

0

1

2

3

Re
la

tiv
e 

va
ria

bi
lity

 in
 a IA

V

CESM

Can
ESM2

GFDL−
ESM2G

Had
GEM2−

ES

IPSL−
LR

MIROC−
ESM MPI

NorE
SM

b) Monthly



The uncertainty on the long-term γ required to produce a χ2 
value of one is larger for land data
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A different subset of CMIP5 models are consistent with the 
observational constraint across four methods
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The constraint on γLT depends on whether model data are 
averaged monthly or annually 
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The emergent constraint from a multi-model ensemble is highly 
dependent on the choice of observational constraint and the 
treatment of model output	


!

The most likely γLT value increases by at least 50% when monthly, 
rather, than annual values are used 	


!

No set of models are consistent with observations across four 
sensitivity tests	


!

Model output should be compatible with observations where 
possible	


!
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