Validating land carbon fluxes in the Community Land Model based on TransCom land regions

> Ernesto Munoz and Keith Lindsay NCAR

Motivation

- Lindsay et al 2014 attributed the weak atmospheric CO₂ response to a weak response in the land-to-air CO₂ fluxes.
- Lindsay et al 2014 found that the model carbon system is undersensitive to variations in physical forcing.
- This is relevant in the context of interannual prediction of the carbon system.

Motivation

- Lagged regression between Nino3.4 SSTs and atmospheric CO₂ at Mauna Loa (top) and Point Barrow (bottom).
- Model (light gray) shows undersensitivity to ENSO signal.

Lindsay et al 2014

Science Questions

- Is interannual CO₂ response in CLM4.5 improved when compared to CLM4 from forced runs?
- How does the relationship with ENSO differ between coupled and forced runs?

Simulations being analyzed:

- Coupled simulations:
 - b40.prescribed_carb.001
 - CLM4
 - Large-ensemble control
 - CLM4

- Land forced simulations:
 - clm40cn
 - clm45bgc

land-to-air CO₂ flux response to ENSO

Coupled simulations

- Lagged regression between Nino3.4 SSTs and land-to-air CO₂ flux
- Simulations are the same as in Lindsay et al 2014. Regions are slightly different.

land-to-air CO₂ flux response to ENSO

Coupled simulation

Land forced simulation

 In tropical America, the land forced simulation has stronger response to observed ENSO than the coupled simulation

land-to-air CO₂ flux response to ENSO

 Lagged regression between Nino3.4 SSTs and land-to-air CO₂ flux in land forced simulations

clm40cn (a) 0.60 clm45bgc 0.30 Ÿ 5 0.00 -0.30 global -0.60 -0.90 -30 -10 10 20 30 Lag (months) 0.40 Tropical Americas (b) Southern Asia 0.20 Indonesia Australia Pg C yr'l K' Africa 0.00 -0.20 clm40cn -0.40 -9/ -10 ö 10 20 30 Lag (months) 0.40 Tropical Americas (C) Southern Asia 0.20 Indonesia Australia Pg c yr ' K' Africa 0.00 -0.20 clm45bgc -0.40 20 30 10 Lag (months)

Land forced simulations

Correlation with ENSO is higher in land forced than in coupled simulation

Land forced

There is phase difference in response to ENSO

stratfd corr nino3.4 DJF no-lead NEE clm40cn

There is phase difference in response to ENSO

stratfd corr nino3.4 DJF no-lead NEE lrgens_contrl

TransCom 3

- Third phase of TransCom focused on interannual variability of CO₂ sources and sinks.
- Solved for CO₂ sources for 1988-2003 for 22 regions using 13 different transport models.

TransCom 3 land-to-air CO2 flux, 1988–2003 by region

Baker et al. 2006 Global Biogeochemical Cycles Volume 20, Issue 1, GB1002, 7 JAN 2006 DOI: 10.1029/2004GB002439 http://onlinelibrary.wiley.com/doi/10.1029/2004GB002439/full#gbc1241-fig-0007

NEE in transcom regions

clm40cn

NEE in transcom regions

clm45bgc

Land-to-air CO₂ flux differs between clm40cn and clm45bgc

clm40cn

clm45bgc

Do these differences point to improvements in CLM4.5?

Summary

- Ongoing work in diagnosing the "undersensitivity" of the model carbon system to variations in physical forcing
- Phase difference in response to ENSO between coupled and land forced simulations
- TransCom inversion data is useful as benchmark for land-to-air CO₂ fluxes
- clm40cn and clm45bgc differ in the amplitude of the anomalies of land-to-air CO₂ flux