
Recent CLM
Refactoring

Bill	
 Sacks	
 (NCAR)	

Much	
 of	
 the	
 work	
 described	
 here	
 was	
 done	
 by	
 Mariana	
 Vertenstein	

with	
 contributions	
 from:	

Ben	
 Andre,	
 Erik	
 Kluzek,	
 Charlie	
 Koven,	
 Dave	
 Lawrence,	
 	

Stefan	
 Muszala,	
 Sean	
 Santos,	
 Jinyun	
 Tang,	
 and	
 others

Appendix slides contain additional reference material

Refactoring for Greater
Modularity & Object

Orientation

Old Centralized Modules – Now Gone

• Data types

‣ clmtype.F90

‣ clmtypeInitMod.F90

• Initialization

‣ initTimeConst.F90

‣ initCold.F90

• History

‣ histFldsMod.F90 

• Accumulation

‣ accumulMod.F90

• Restart

‣ biogeophysRestMod.F90

‣ CNRestMod.F90

• Biogeochemistry

‣ CNSetValue

Example of New Modularization:
IrrigationMod.F90

Example of New Modularization:
IrrigationMod.F90

Example of New Modularization:
IrrigationMod.F90

Example of New Modularization:
IrrigationMod.F90

More Common for Existing Code:
Semi-Modularity

• New *Type.F90 modules combine variable declarations
with infrastructure code – what used to be in:

‣ clmtype.F90

‣ clmtypeInitMod.F90

‣ initCold.F90

‣ histFldsMod.F90

‣ *RestMod.F90

‣ (and others)

• But science routines are in separate modules

• Example: TemperatureType.F90 (see appendix)

Why is this Good?

• Explicit arguments show data flow through the
system

• Easier to read & modify code: No longer need to
touch numerous infrastructure modules

• Supports unit testing

• Supports having multiple implementations of a
parameterization

src/main/clm_instMod.F90

Instances only used directly by
clm_initializeMod and clm_driver

Separation of below-ground and
above-ground biogeochemistry

• Goals:

‣ Make soil biogeochemistry independent of CN or ED
vegetation biogeochemistry

‣ Separate ED and CN functionality – EITHER ED or CN
is on and both will work with the same soil
biogeochemistry

• Directory structure:

‣ soilbiogeochem/ – new; independent of ED or CN

‣ biogeochem/ – CN vegetation

‣ ED/ – ED vegetation

Supporting Alternative Implementations
via Polymorphism

Martin Fowler (Refactoring: Improving the Design of Existing Code, pp
255-256): "One of the grandest sounding words in object jargon is
polymorphism.... it allows you to avoid writing an explicit conditional
when you have objects whose behavior varies depending on their types
[in CLM: when you have science implementations whose behavior
varies depending on a namelist flag]. The biggest gain occurs when this
same set of conditions appears in many places in the program. If you
want to add a new [implementation], you have to find and update all
the conditionals. But with [polymorphism] you just create a new
subclass and provide the appropriate methods.... [This] reduces the
dependencies in your system and makes it easier to update."

• A base type defines the common interface

‣ Routines called from driver or elsewhere

‣ Variables available to other parts of the code

• Separate module for each implementation

‣ Implementation of each routine

‣ Private data specific to this implementation

• Examples:

‣ Ozone on vs. off: See appendix

‣ Soil water retention curve

‣ Nutrient competition method

Supporting Alternative Implementations
via Polymorphism

Other
Useful
Stuff

Development with Unit Tests
• Leverages new unit testing framework in CESM

‣ Uses pFUnit

‣ CESM infrastructure developed by Sean Santos

• Contact us if you'd like help developing unit tests for your code

‣ clm-cmt@cgd.ucar.edu

mailto:clm-cmt@cgd.ucar.edu

CLM Developers' Guide
http://www2.cesm.ucar.edu/working-groups/lmwg/developer-guidelines

Please Contact Us!

• The CLM Code Management Team (CLM-CMT)
is here to help

‣ clm-cmt@cgd.ucar.edu

• We welcome any feedback

• We encourage you to contact us before starting
big developments

mailto:clm-cmt@cgd.ucar.edu

Appendix –
Additional Reference Material

More Details on the Refactor for Modularity

• Data structures arranged by scientific functional categories

‣ temperature_type, waterstate_type, energyflux_type, ….

• All subgrid levels are in the data structure

‣ variables are now appended with a unique suffix to indicate their subgrid levels

‣ new suffixes: _patch, _col, _lun, _grc

‣ This does NOT effect the science code base – ONLY the associate statements

• Separate module for each data type definition

‣ TemperatureType.F90, WaterstateType.F90, EnergyFluxType.F90,…

• Each data type has associated methods for

‣ Allocation of variables – all variables now initialized as NaNs

‣ Cold start initialization of variables – this is now ALWAYS done and overwritten if finidat is read in
as spun up dataset (also now have online interpolation of initial conditions as part of this refactor as
well)

‣ History initialization of variables (all history fields now initialized as spval)

‣ Restart initialization of variables

‣ Accumulation initialization and accumulation update of variables

• Instantiation of datatypes is now separate from their declaration (now in
clm_instMod.F90)

Recent File Renaming

• Biogeophysics1Mod.F90 =>
CanopyTemperatureMod.F90

• Hydrology1Mod => CanopyHydrologyMod

• Biogeophysics2Mod => SoilFluxesMod

• HydrologyNoDrainage, HydrologyDrainage =>
SoilHydrologyMod

• PhotosynthesisMod has been separated from
CanopyFluxesMod – and is its own module

Example of New, More Common Semi-Modularization:
TemperatureType.F90

This module contains all infrastructure code that operates on
temperature variables, but does NOT contain science routines.

Example of New, More Common Semi-Modularization:
TemperatureType.F90

Polymorphism Example: Ozone

• There are two options for ozone: on & off

‣ Ozone off can be thought of as an alternative (albeit very simple)
implementation

• Without polymorphism, there were a number of
conditionals ("if (use_ozone) then ...") throughout the
code, both inside and outside the ozone module. This
made it more difficult to understand what code applies
and what doesn't apply when ozone is off.

• The polymorphism implementation allows the
use_ozone conditional to appear in only one place in the
code.

• There are then separate modules that provide the
implementation for ozone on and ozone off.

Polymorphism Example: Ozone
Base class provides the common interface, as well as routines that are shared

between all implementations (e.g., allocating and initializing public data).

Polymorphism Example: Ozone
Base class, continued

Polymorphism Example: Ozone
OzoneMod provides the implementation when ozone is turned on

Polymorphism Example: Ozone
OzoneOffMod provides the implementation when ozone is turned off

Polymorphism Example: Ozone
OzoneOffMod, continued

Polymorphism Example: Ozone
OzoneFactoryMod creates the appropriate instance of ozone_base_type. This
is the only place in the code where there is a conditional based on use_ozone.

Polymorphism Example: Ozone
Other modules can refer to subroutines and variables in ozone_base_type,

without any concern for whether ozone is on or off in this run (thus
decoupling and simplifying different parts of the code).

Polymorphism Example: Ozone
Modules referring to ozone, continued

