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Motivation: many-query applications

Parameters Models : Output of interest
_ MeD A, )
Geophysical Experimental fit Saturation field
properties S Temperature field

Fluid properties
Source/sink terms

Change in water table
Net carbon flux

High-resolution
numerical models

Boundary conditions

Computationally expensive
to evaluate many times: needed for
uncertainty quantification, data
assimilation and sensitivity analysis.



Why do we need high-resolution

models?
T

o (e.g.) High-latitude ecosystems (permafrost tundra and peatlands) illustrate

nonlinear dependence on environmental state variables
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http://dgrnewsservice.org/

Motivation: Multiscale simulations

BGC! Nitrogen Current climate
l cycle? models

B )
10 1 10 102 10° 104m

= Accurate description of BGC processes, e.g.
methanogenesis, requires preservation of subgrid
heterogeneity.

o A global model discretized at the BGC scale would be
too computationally expensive.

o If we model processes on difference scales, how do we
bridge the scale differences?

"Frei et al., ] Geophys Res-Biogeo, 117, 2012. 2McClain et al., Ecosystems, 6, 301-312, 2003.



Approach for Scaling:
Reduced-Order Model (ROM)

1. Perform simulations with fine-scale, process model

that sample the parameter space
PFLOTRAN (<1 m), CLM-PAWS (~100 m)

2. Train ROM: numerical surrogate

3. Couple ROM to large-scale model

Example: POD
(Principle
Orthogonal
Decomp.) = EOF
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Coarse & fine snapshots

Large existing ROM literature in other fields...
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Decomposition: POD procedure




Terrestrial Ecosystem Examples

POD-MM applied to polygonal tundra and
temperate watersheds

Maps coarse-grid solutions to fine-grid solutions

GPOD-EIP applied to global soil carbon

Reproduces spatial field based on results on sparse
sample

POD-GPR applied to temperate watersheds

Develops functional relationship between inputs
(environmental forcings and model parameters) and
outputs (hydrology and BGC)



Barrow Polygonal Tundra Experimental

Setup

0 Simulation setup

o1 Performed 5 years (summer) of

surface-subsurface isothermal flow
simulation using PFLOTRAN

o1 Horizontal grid spacing: 0.25 to 8 m

; o1 Boundary conditions: Offline CLM
LIDAR DEM of the sites. simulations




Principal Orthogonal Decomposition-
Mapping Method

POD-MM Setup

Trained using the first 3 years using soil
moisture solutions.

Validated using soil moisture solutions
from the last 2 years.

The 0.25 m grid space is the “truth”
solution we want to reproduce.



Results Summary
Pau et al. (2014, GMD)
_ 9|

* Reproduces soil moisture at 32-times finer resolution
with coarse information

* 1000 times computational speedup

e Relative error ~ 104

Coarse solution Fine solution ROM solution

g,Ax,=8m f Axf =0.25m POD-MM

0-5cm layer



Clinton River (MI) Watershed

0
42.50 e

soil moisture
Value

W High : 0.5
B Low 0125

-83.50° 83.25° -83.00°
CLM4-PAWS simulation at 220 m (Riley and Shen, HESS 201 4)




Clinton River Setup

CLM4-PAWS

PAWS: Shen & Phanikumar (2010, WRR): a quasi-
3-D saturated groundwater domain and 1-D
Richards equation.

Resolutions ranging from 220 to 7040m.

Observed (MOD16A3) Simulated (PAWS+CLM)

Evapotranspiration (mm)

R |
0 186 372 558 744 930



Results for Latent heat & NPP

Latent heat (W m2) s NPP (g Cm?5s7)
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Monthly absolute error on the coarse grid (using fine grid as
truth) is significantly reduced.



Gappy POD (GPOD) for CLM4.5BGC

1 Utilizes a subset of the fine-resolution
solution to reconstruct the whole

o1 Everson and Sirovich (1995, J Opt Soc Am)

o Works well with embarrassingly-parallel models
like CLM.

71 Uncertainty Quantification:

o Exploring full parameter space with CLM is
expensive

o Can we capture the characteristic behavior with
only ~50-500 representative gridcells?

o1 Another application: faster spinup



GPOD + EIP

What is a good (enough) subset of points to use
in the GPOD procedure?

Unlike the image-processing problem, we get
to choose the subset of points to be
representative.

Finding optimal set is intractable so use a
heuristic

EIP proved superior to several alternatives



EIP (Maday et al.,, Commun. Pur. Appl. Anal., 2009)
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Classical analogue is
polynomial interpolation.

interpolation.
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Chebyshev points are good

i

points for polynomial

Similarily, we pick “good” points for GPOD using EIP on the basis.



GPOD: Train

snapshot 1

snapshot 2
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Empirical interpolation procedure (EIP): select sparse
subset of gridcells




GPOD: Predict

Perform simulation on sparse grid.

Choose M POD basis elements (i.e.,
EOFs)

Find the linear combination of the M that
minimizes the error on the sparse grid.

Project onto the full grid



Permafrost Carbon Feedback

Soil carbon for different z_

CLM4.5 Z.=10m Soil G lo 1m (kg C m?)

1 2 5 10 15 20 30 50 100

1 Setup
Koven, Lawrence, & Riley (in revision, PNAS)

Predict future soil and vegetation carbon
distributions.

31 CLM4.5 simulations differed with
respec’r fo:

m Forcing (historical, RCP8.5...)

m CO, concentration

m Active N cycle

u Depth-dependent decomposition (z,) parameter:
surrogate for missing processes (priming, mineral
interactions, etc.).



Permafrost Carbon Feedback

1 ROM Setup

Choose 10 simulations out of
the 31 simulations for training.

® Based on an adaptive sampling
procedure.

® Monthly or annual data.

The rest of the 31 simulations
are used for validation.

Two most different soil carbon snapshots



Soil carbon results

Reconstructed

==

- Worst reconstruction (0.8%
error) for annual-mean soil
carbon (g m2).

- 80 gridcells (0.4%)
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Latent heat flux results

Reconstructed

—-—

O _Mon;rhly latent heat flux
(W m2).

1 500 gridcells (2.5%)

1 Worst mean relative error =
11%.

Annual: 6%, Decadal: 3%

..........................

Original

-
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Gaussian Process Regression (GPR)

A machine learning algorithm:
generalization of kriging

Input = output function modeled as
Gaussian process
Implicitly determines a parsimonious
representation of heterogeneity in
parameter space

Input data + forcing



POD+GPR: Barrow

1 3 parameters:
POD-MM  POD + GPR

Time (day) rel. error (10) rel. error (10)
A | A
Precip. s lso ] i
P A0 U 10
0 L '
ET S S, 130 30

- Relative error ~ 10-3. .

Larger than POD-MM
but faster.

45-50cm



Parallel Reduced Order Models for Earth

PROME

Systems
Observation pmm——————— -
|
( ¥ 1 E ﬁ:i{ train i
> Data = . |
) ) % —P[ predict |
( ) — N — y;
CLM/CE I
& ‘
o — GPR (——{ ROMS
4 , N Z N
External physics o
modules e.g. Tough,
pflotran, PAWS.

N\ J

C++ object-oriented code allows new
methods to be added easily.




Summary

We demonstrated examples in which ROM
maintains accuracy while reducing computation

No one-size-fits-all solution.
Trial & error with different problems.

Working on pROME: standardize ROM workflow
and couple to CLM.

Lacking: comprehensive high-fidelity models for
ecosystems of interest (i.e., permafrost /
peatiands)
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Barrow: Optimal M
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POD+GPR at Clinton River

For constructing POD bases at any site.

As a way to deal with site-independent ROM.

actual reconstructed

medan

0.02
{0.01

first basis

-0.01

-0.02



GPOD: PREDICT

Perform simulation on sparse grid.
Choose M ( <N ) POD bases

L & > Tolerance for
BN
=1 i=1

neglected variance

Solve a least-square minimization problem (a
MxM linear system):

M
o0 =argmin, If(x )- f(xs) — Eyf_g“f(xs) I
i=1
Reconstruct the ROM solution:

M
f= P =T+ Yo

i=1
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