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Why do we need high-resolution 
models? 
 (e.g.) High-latitude ecosystems (permafrost tundra and peatlands) illustrate 

nonlinear dependence on environmental state variables 

c/o Permafrost Carbon Network 

Yedoma, from http://dgrnewsservice.org/  
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Approach for Scaling: 
Reduced-Order Model (ROM) 

1. Perform simulations with fine-scale, process model 
that sample the parameter space 
 PFLOTRAN (<1 m), CLM-PAWS (~100 m) 

2. Train ROM: numerical surrogate 
3. Couple ROM to large-scale model 

Example: POD 
(Principle 
Orthogonal 
Decomp.) = EOF 

Large existing ROM literature in other fields… 
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Terrestrial Ecosystem Examples 

 POD-MM applied to polygonal tundra and 
temperate watersheds 
 Maps coarse-grid solutions to fine-grid solutions 

 GPOD-EIP applied to global soil carbon 
 Reproduces spatial field based on results on sparse 

sample 
 POD-GPR applied to temperate watersheds 

 Develops functional relationship between inputs 
(environmental forcings and model parameters) and 
outputs (hydrology and BGC) 
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Barrow Polygonal Tundra Experimental 
Setup 

LIDAR DEM of the sites. 

 Simulation setup  
 Performed 5 years (summer) of 

surface-subsurface isothermal flow 
simulation using PFLOTRAN 

 Horizontal grid spacing: 0.25 to 8 m 
 Boundary conditions: Offline CLM 

simulations 
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Principal Orthogonal Decomposition-
Mapping Method 

POD-MM Setup 
Trained using the first 3 years using soil 

moisture solutions. 
Validated using soil moisture solutions 

from the last 2 years.  
The 0.25 m grid space is the “truth” 

solution we want to reproduce. 
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Results Summary 
Pau et al. (2014, GMD) 

Coarse solution Fine solution ROM solution 

• Reproduces soil moisture at 32-times finer resolution 
with coarse information 
• 1000 times computational speedup 
• Relative error ~ 10-4 
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Clinton River (MI) Watershed 

CLM4-PAWS simulation at 220 m (Riley and Shen, HESS 2014) 
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Clinton River Setup 

 CLM4-PAWS 
PAWS: Shen & Phanikumar (2010, WRR): a quasi-

3-D saturated groundwater domain and 1-D 
Richards equation.  

Resolutions ranging from 220 to 7040m. 
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Results for Latent heat & NPP 

month 

Monthly 
average 

error 

month 

POD-MM 
@7040m 

POD-MM 
@7040m 

Latent heat (W m-2) NPP (g C m-2 s-1) 

Monthly absolute error on the coarse grid (using fine grid as 
truth) is significantly reduced. 
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Gappy POD (GPOD) for CLM4.5BGC 

 Utilizes a subset of the fine-resolution 
solution to reconstruct the whole 
 Everson and Sirovich (1995, J Opt Soc Am) 
 Works well with embarrassingly-parallel models 

like CLM. 

 Uncertainty Quantification: 
 Exploring full parameter space with CLM is 

expensive 

 Can we capture the characteristic behavior with 
only ~50-500 representative gridcells? 

 Another application: faster spinup 
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GPOD + EIP 

What is a good (enough) subset of points to use 
in the GPOD procedure? 
 Unlike the image-processing problem, we get 

to choose the subset of points to be 
representative. 

 Finding optimal set is intractable so use a 
heuristic 
 EIP proved superior to several alternatives 
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EIP (Maday et al., Commun. Pur. Appl. Anal., 2009) 

Classical analogue is 
polynomial interpolation. 

Chebyshev points are good 
points for polynomial 
interpolation. 

Similarily, we pick “good” points for GPOD using EIP on the basis. 
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GPOD: Train 

snapshot 1 snapshot 2 

POD 

mean 

basis 1 basis 2 

Empirical interpolation procedure (EIP): select sparse 
subset of gridcells 
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GPOD: Predict 

1. Perform simulation on sparse grid. 
2. Choose M POD basis elements (i.e., 

EOFs) 
3. Find the linear combination of the M that 

minimizes the error on the sparse grid. 
4. Project onto the full grid 
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Permafrost Carbon Feedback 

 Setup 
 Koven, Lawrence, & Riley (in revision, PNAS) 
 Predict future soil and vegetation carbon 

distributions. 
 31 CLM4.5 simulations differed with 

respect to: 
 Forcing (historical, RCP8.5…) 
 CO2 concentration 
 Active N cycle 
 Depth-dependent decomposition (zτ) parameter: 

surrogate for missing processes (priming, mineral 
interactions, etc.). 
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Permafrost Carbon Feedback 

 ROM Setup 
 Choose 10 simulations out of 

the 31 simulations for training. 
 Based on an adaptive sampling 

procedure. 
 Monthly or annual data. 

 The rest of the 31 simulations 
are used for validation. 

Two most different soil carbon snapshots 
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Soil carbon results 

 Worst reconstruction (0.8% 
error) for annual-mean soil 
carbon (g m-2).   

 80 gridcells (0.4%) 
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Latent heat flux results 

 Monthly latent heat flux 
(W m-2).   

 500 gridcells (2.5%) 
 Worst mean relative error = 

11%. 
 Annual: 6%, Decadal: 3% 

21 



Gaussian Process Regression (GPR) 

A machine learning algorithm: 
generalization of kriging 
Input  output function modeled as 

Gaussian process 

 Implicitly determines a parsimonious 
representation of heterogeneity in 
parameter space 
Input data + forcing 
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 3 parameters: 
 Time (day) 
 Precip. 
 ET 

 Relative error ~ 10-3. 
 Larger than POD-MM 

but  faster.  

POD+GPR: Barrow 
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pROME Parallel Reduced Order Models for Earth 
Systems 

 

C++ object-oriented code allows new 
methods to be added easily. 
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Summary 

 We demonstrated examples in which ROM 
maintains accuracy while reducing computation 

 No one-size-fits-all solution. 
 Trial & error with different problems. 

 Working on pROME: standardize ROM workflow 
and couple to CLM. 

 Lacking: comprehensive high-fidelity models for 
ecosystems of interest (i.e., permafrost / 
peatlands) 
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Barrow: Optimal M 
Site A Site D 

0.5m 
1.0m 
2.0m 
4.0m 
8.0m 

0.5m 
1.0m 
2.0m 
4.0m 
8.0m 

• Determine an optimal M 
without knowing actual error. 

• A good criterion: 
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POD+GPR at Clinton River 

 For constructing POD bases at any site. 
 As a way to deal with site-independent ROM. 
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