

Towards
forestry in
the
Community
Land Model

R. Quinn Thomas Ben J. Ahlswede

Forest management is widespread across the globe

Purple = exited and entered forest classification during the 2000s

Conceptually what is forest management?

Duncker et al. 2012 Ecology and Society

- Extensive/Passive/Low Input
 - Forests grow with little management inputs
 - Close-to-nature forestry
- Intensive
 - Forest with significant management inputs
 - High productivity per land-area
 - Even-aged
 - Can include shortened rotations

Where to plant -> what to plant -> how to manage it

Acres

Southern Pines as an example: Intensification has been widespread

Area of pine plantation forestry in the Southern U.S.

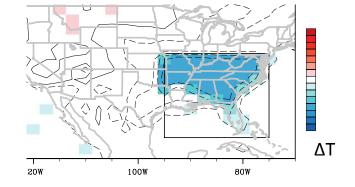
والمواجعة	
7//	

Southern Pines as an example: Intensification has become more intense

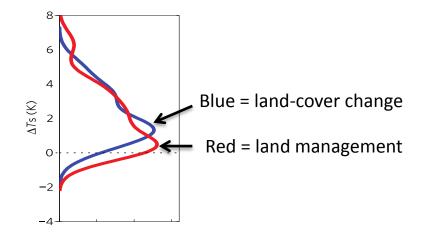
	Increase in yields and the associated management inpu
_	
Focus on volume	
volume -> of wood	

How might forest management influence climate?

- Carbon cycle
 - Increased productivity
 - Must account for wood products as well
 - Yields ≠ NEP
- Nitrogen cycle
 - Fertilization influencing N₂0
 - Higher growth rates decreasing N losses?
- Albedo
 - Shorter rotations = more soil exposed and lower LAIs
- Latent and Sensible heat through changes in surface roughness or stomatal conductance
- BVOC production?


Focus on both land-cover and land-management

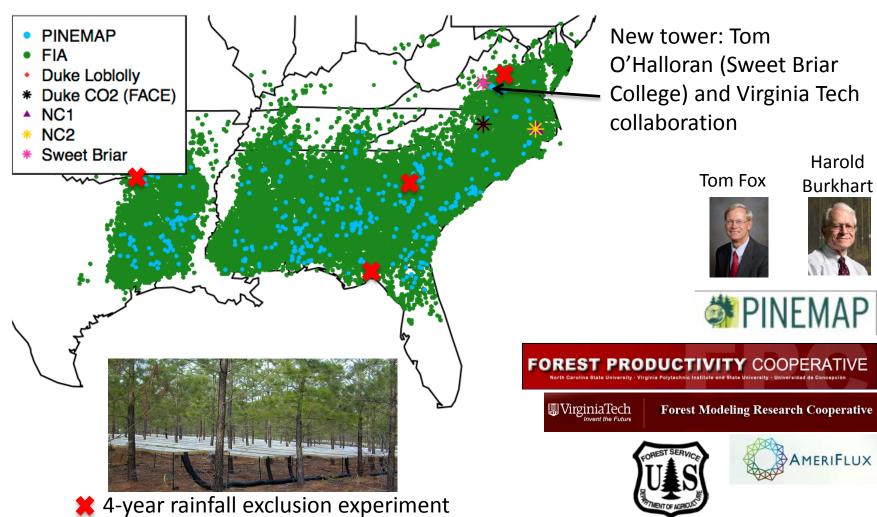
1 JULY 2012


JOURNAL OF CLIMATE

Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer*

GUANG-SHAN CHEN, MICHAEL NOTARO, AND ZHENGYU LIU

nature climate change



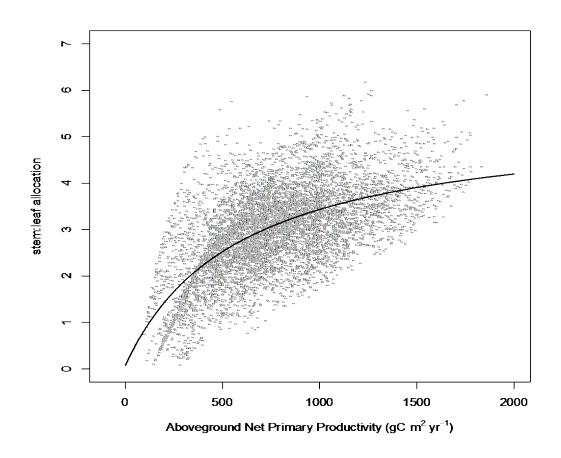
Big questions using the CLM

- How do different management activities influence climate?
- Can we meet societal demand for wood products while having a positive or neutral influence on climate?
- What details of forest management are globally relevant in the CLM?
- How does explicit forest management interface with new CMIP6 land-use forcing?

Data availability for model development and evaluation

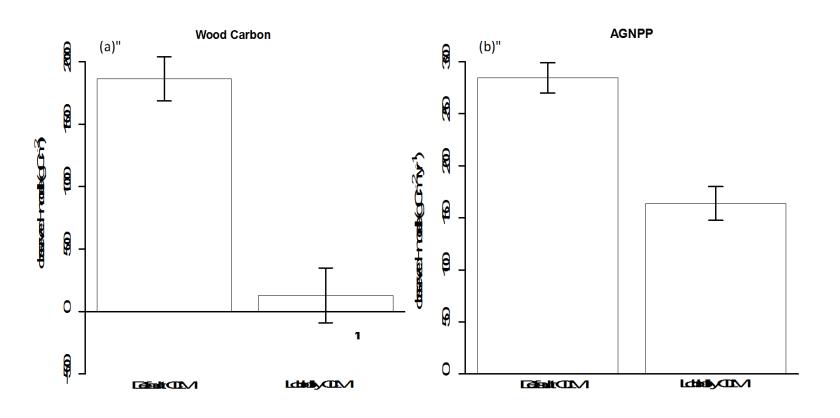
Examples of forestry Trial Data

Nutrients, spacing, thinning, genetics, weed/hardwood control


RW25	Nutrient Omission Design for Eucalyptus	2010- 2016
RW24	Cold-hardy Eucalyptus for the SE US	2010- 2016
RW23	Intensity and duration of weed control	2010- 2011
RW22	Twin-plot network in pine plantations	2010- 2011
RW21	Twin-plot network in Eucalyptus plantations	2010- 2012
RW20	P. taeda variety and silviculture in the southeastern US and Brazil. Varieties have differing crown ideotypes	2009- 2010
RW19	Thinning x fertilization factorial in P. taeda plantations	2006- 2009
RW19	Thinning x fertilization factorial in P. taeda plantations	2006- 2009
RW19	Thinning x fertilization factorial in P. taeda plantations	2006- 2009

RW19 Thinning x fertilization factorial in P. taeda plantations

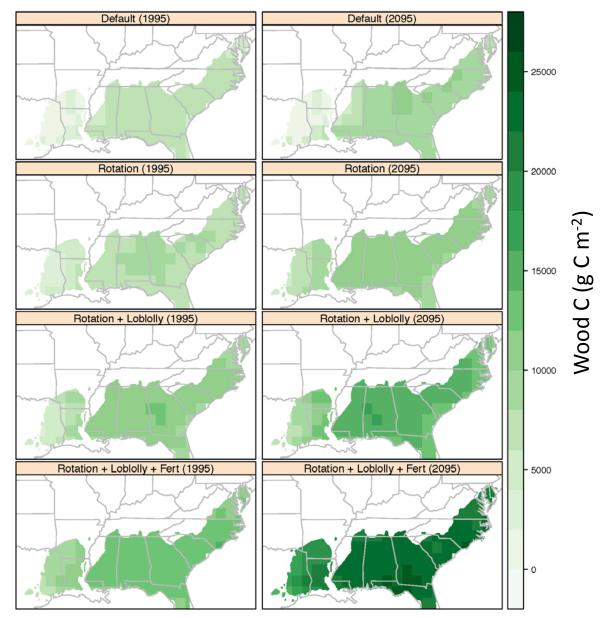
RW18	Optimal rates and frequencies of nutrient application. P. taeda in southeast US and Argentina, E. grandis in Colombia	1998- 2006
RW18	Optimal rates and frequencies of nutrient application. P. taeda in southeast US and Argentina, E. grandis in Colombia	1998- 2006
RW18	Optimal rates and frequencies of nutrient application. P. taeda in southeast US and Argentina, E. grandis in Colombia	1998- 2006
RW17	Fertilization x vegetation control factorial at midrotation. Pines and hardwood crop trees monitored	1996- 2002
RW17	Fertilization x vegetation control factorial at midrotation. Pines and hardwood crop trees monitored	1996- 2002
RW16	Surface x subsurface tillage factorial at establishment. All plots receive weed control. Primarily upland clay and clay loam sites	1994- 2000
RW15	Combinations of N, P, K, and micronutrients in established stands. Also, in Pinus radiata in Chile	1989- 1999
RW15	Combinations of N, P, K, and micronutrients in established stands.	1989- 1999
RW14	Control, 45N, 50P, 100K combinations, and delay and repeat fertilization at establishment on primarily Gulf Coastal Plain sites	1989- 1998
RW13	Midrotation fertilization with factorial combinations of N and P for P. taeda in the US and P. radiata in Chile	2002- 2016
RW13	Midrotation fertilization with factorial combinations of N and P for P. taeda in the US and P. radiata in Chile	2002- 2016
RW11	Control, 45N, 50P, 100K combinations, and delay and repeat fertilization at establishment on primarily Gulf Coastal Plain sites	
RW07	Site prep (low, high intensity) x fertilization (0, 250 lb/ac DAP) x weed control (None, 2 yrs). Primarily Coastal Plain sites in southeast US. P. radiata in Chile, P. taeda in Argentina	1979- 81, 2000- 04
RW07	Site prep (low, high intensity) x fertilization (0, 250 lb/ac DAP) x weed control (None, 2 yrs). Primarily Coastal Plain sites in southeast US. P. radiata in Chile, P. taeda in Argentina	1979- 81, 2000- 04
RW07	Site prep (low, high intensity) x fertilization (0, 250 lb/ac DAP) x weed control (None, 2 yrs). Primarily Coastal Plain sites in southeast US. P. radiata in Chile, P. taeda in Argentina	1979- 81, 2000- 04



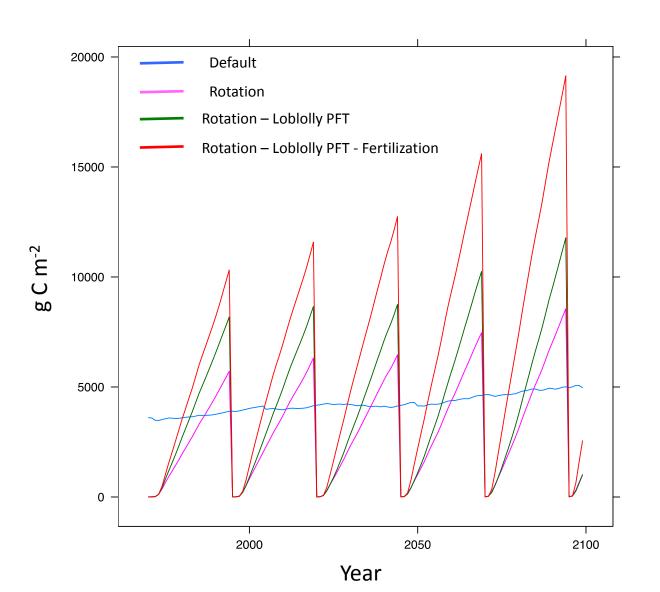
Parameterization of dynamic stem allocation using forest trial data

Including loblolly PFT improved model performance

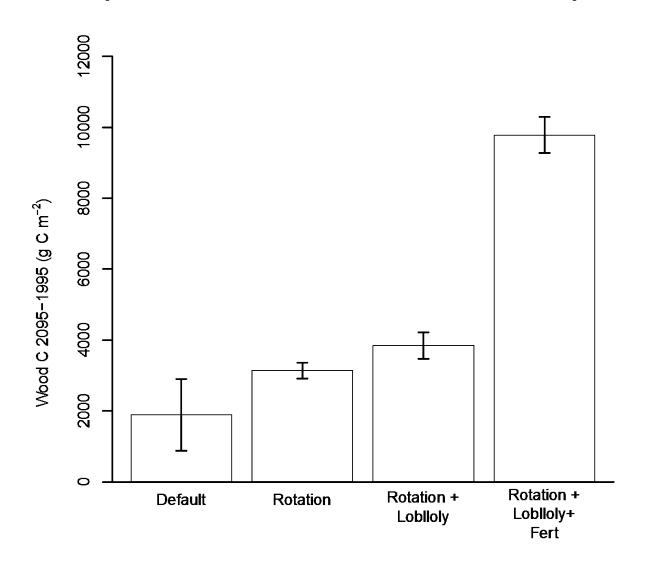
CLM 4.5 BGC

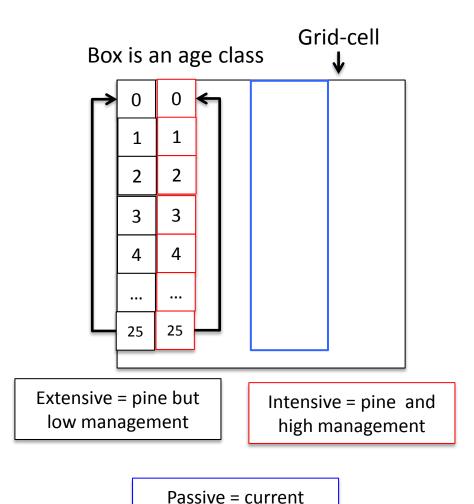


Forest management

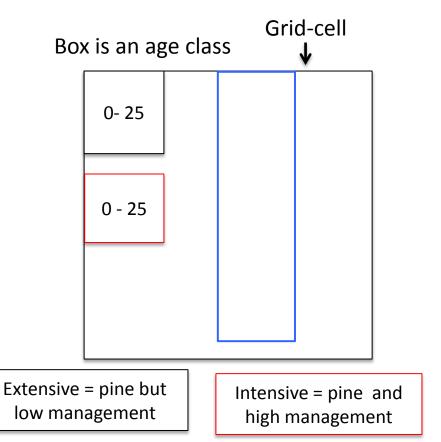

- Temperate pine PFT throughout region
- Harvest rate = 1/25 years
- Temperate pine PFT throughout region
- 100% harvest every 25 years followed by replanting
- 1% mortality rate
- Fire suppression
- Replace temperate pine with loblolly specific PFT
- Otherwise same as previous

- Nitrogen limitation removed
- Otherwise same as previous


Response of WOOD C between 1995 and 2095 (RCP 8.5 CCSM4 using CLM 4.5 BGC)


Region-wide mean wood C

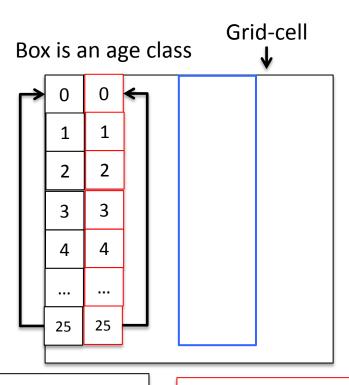
Δ Wood C at end of 25 year rotation (2095 – 1995; RCP 8.5)


Proposed forest management tiling structure

forest implementation

- Build on the existing crop model
- Build on existing dynamic land-units
- Add capacity to transfer vegetation biomass between units
- Harvesting transfersproportion of land-unit to the0 age class
- Biophysics are calculated for each age class or groups of age classes

Proposed forest management tiling structure


 Alternatively use ED model with extensive and intensive land-units

- ED would handle the age transitions
- Share soils across ages
- Test of ED model using a "white lab rat" system
 - Planting densities

Passive = current forest implementation

Proposed forest management tiling structure

Needs for CMIP6

- Secondary vs. primary harvest
- Harvest type
 - Industrial roundwood fraction
 - Traditional fuelwood fraction
 - Commercial biofuels fraction

Extensive = pine but low management

Intensive = pine and high management

Passive = current forest implementation

