Very Short Lived (VSL) Halogens in CAM-Chem

D. Kinnison (NCAR), J. F. Lamarque (NCAR), S. Tilmes (NCAR), A. Saiz-Lopez (CSIC)

February 17, 2015 Chemistry Working Group Meeting, Boulder Co.

Publications in 2014 / 2015

VSL Bromine (TTL):

 <u>Fernandez</u>, R. P., R. J. Salawitch, D. E. Kinnison, J-F. Lamarque, and A. Saiz-Lopez, Bromine partitioning in the tropical tropopause layer, implications for stratospheric injection, *Atmos. Chem. Phys.*, 14,13391-13410, doi:10.5194/acp-14-13391-2014, 2014.

VSL Iodine (Troposphere):

• <u>Saiz-Lopez</u>, A., R. P. Fernandez, C. Ordonez, D. E. Kinnison, J. C. Gomez, Martin, J-F. Lamarque, and S. Tilmes, Iodine chemistry in the troposphere and its effect on ozone, *Atmos. Chem. Phys.*, 14, 13119-13143, doi:10.5194/acp-14-13119-2014, 2014.

Marine Boundary Layer:

- <u>Prados-Roman</u>, C., C. A. Cuevas, T. Hay, R. P. Fernandez, A. S. Mahajan, S-J. royer, M. Gali, R. Simon, J. Dashs, K. GroBmann, D. E. Kinnison, J-F Lamarque, and A. Saiz-Lopez, Iodine oxide in the global marine boundary layer, *Atmos. Chem. Phys.*, 15, 583-593, doi:10.5194/acp-15-583-2015.
- <u>Prados-Roman</u>, C., C. A. Cuevas, R. P. Fernandez, D. E. Kinnison, J-F Lamarque, and A. Saiz-Lopez, A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine, in press, *Atmos. Chem. Phys.*, 2015.

Outline Continued

Other Studies in the Works...

CONTRAST / TORERO (TOGA Instrument – Eric Apel / Rebecca Hornbrook)

• Results will be presented at EGU2015.

CONTRAST / TORERO BrOy budget

- Collaboration with Ross Salawitch (U. of Maryland).
- Collaboration with Elliot Atlas and Maria Navarro (U. of Miami).

CONTRAST OH Budget

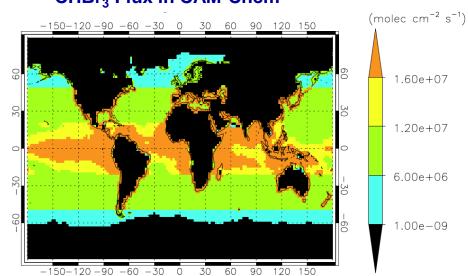
• Collaboration with Julie Nicely and Ross (U. of Maryland)

TORERO IOy budget in the TTL.

• Collaboration with Rainer Volkamer's group (U. of Colorado).

CAM-Chem with VSL Chemistry

NCAR CESM CAM-CHEM


- Global Chemistry-Climate Model
- ~1.0° horizontal resolution
- Specified Dynamics Version (GEOS5)
- 56 vertical levels (surface to ~ 2 hPa)

Lamarque et al., Geosci. Mod. Dev., 2012

Tropospheric Halogen Chemistry

Halogenated sources from the ocean.

- Emissions following Chl-a over tropics
- Catalytic release from sea-salt
- Do NOT have polar emission processes
 Chemical Processes
- Photochemistry (CI, Br, and I)
- Dry / wet deposition
- 9 Additional vsl Organic species included.
- 160 species, 427 reactions

Source gas	Global annu	Lifetime	
	This study	Literature	(this study)
CHBr3	533	400ª, 595 ^b , 448 ^d	17 days
CH ₂ Br ₂	67.3	113 ^c , 62 ^d	130 days
CH ₂ BrCl	10.0	6.8 ^c	145 days
CHBr ₂ Cl	19.7	23°	56 days
CHBrCl ₂	22.6	16 ^c	46 days
CH ₃ Br*	climatology	131 ^c	1.6 yr ^g
CH ₃ I**	303	304 ^e	5 days
CH ₂ IC1	234	236 ^f	8 h
CH ₂ IBr	87.3	87 ^f	2.5 h
CH_2I_2	116	116 ^f	7 min

Total Bromine: 632 Gg Br yr⁻¹ Total Iodine: 600 Gg I yr⁻¹

Ordoñez et al., ACP, 2012; Saiz-Lopez et al., ACP, 2012.

CHBr₃ Flux in CAM-Chem

Organic Bromine in the TTL

Fernandez et al., ACP, 2014.

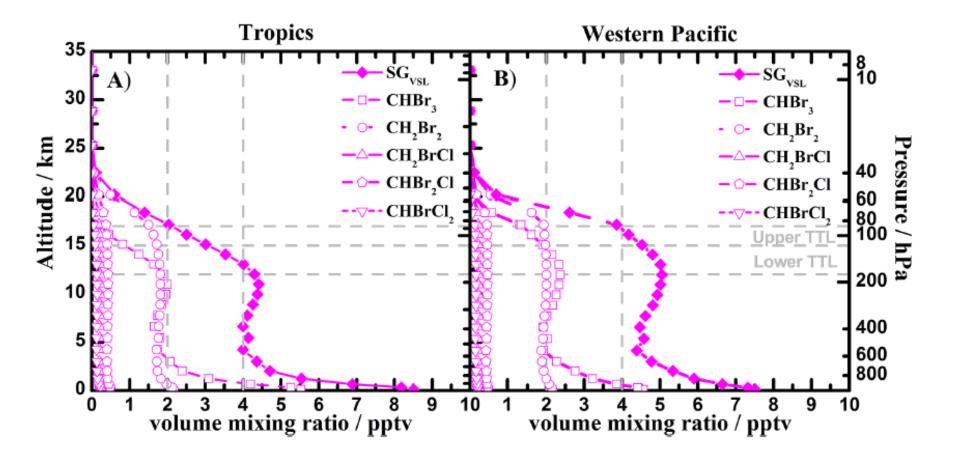


Figure 2. Vertical profile abundances of the five VSL bromocarbons considered in CAM-Chem for the tropical annual average (a) and the Western Pacific region (b). All halocarbon abundances are multiplied by their respective atomicity in order to represent their contribution to Br_v after photolysis or reaction with OH. The total organic SG_{VSL} contribution is also shown by the filled diamonds.

Inorganic (and Org.) Bromine in the TTL

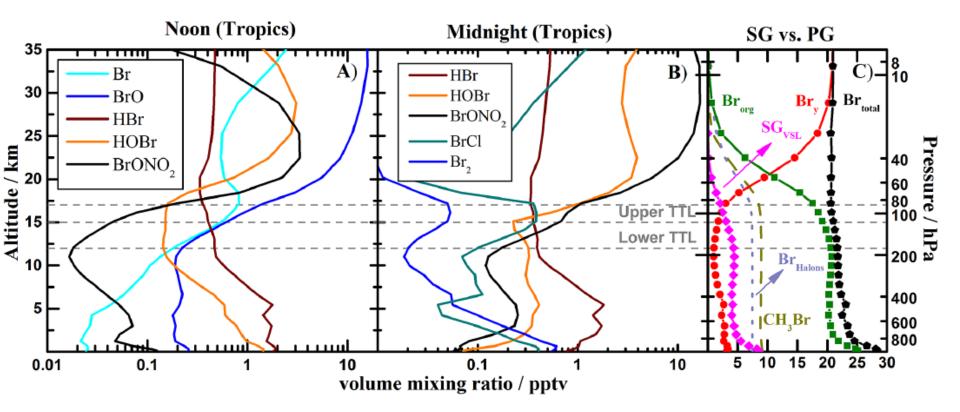
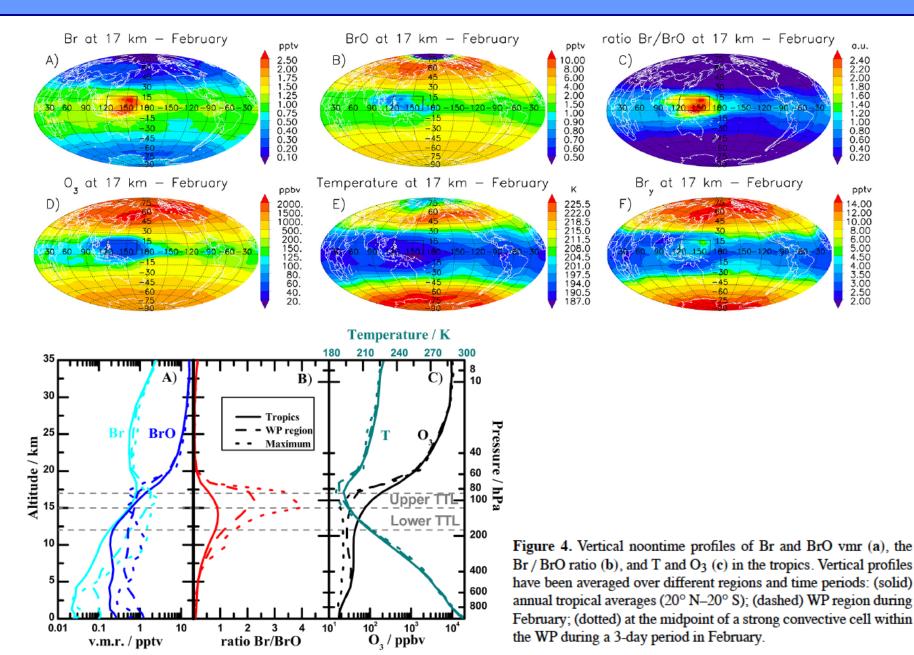
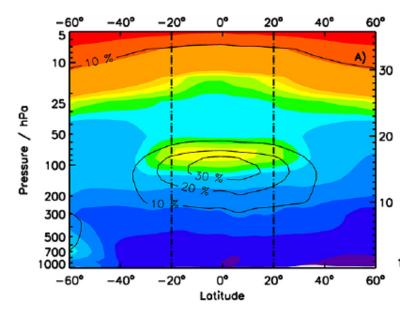
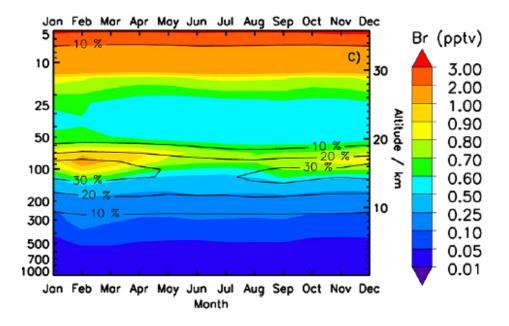




Figure 1. Annual vertical profile abundances of organic and inorganic bromine species within the tropics $(20^{\circ} \text{ N}-20^{\circ} \text{ S})$: (a) main Bry species at noon; (b) main Bry species at midnight; and (c) 24 h average contribution of organic and inorganic species to total bromine. The horizontal dotted lines represent the approximate location of the TTL.

Noontime Geographical Distribution



Tropical Ring of Atomic Bromine in the TTL

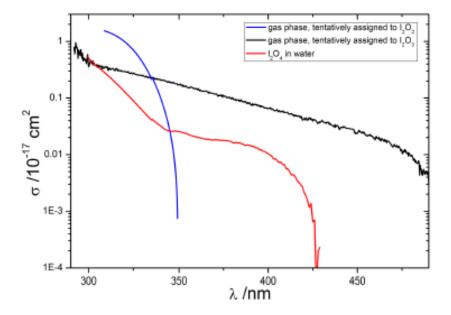
Annual Average

Zonally Averaged Seasonal Evolution

Summary Bromine in TTL

- Using a state-of-the-art photochemical mechanism within a global CCM (CAM-Chem), we calculate that ~5pptv VSL bromine inters the lower stratosphere.
 - 3 pptv as Product Gases (Inorganic)
 - 2 pptv as Source Gases (Organic)
- Our calculations indicate that atomic Br should be the dominant inorganic species in the TTL region during daylight.
 - Nighttime reservoirs are HOBr and BrCl
- We propose the existence of a "tropical ring" of atomic Br.
 - Located between ~15-19km and 30°N-30°S.
- Daytime ratios of Br/BrO approach a factor of ~4.
- Experimental programs should include a strategies to measure atomic Br during daytime hours (along with HOBr and BrCl during nighttime).

Tropospheric Iodine Chemistry

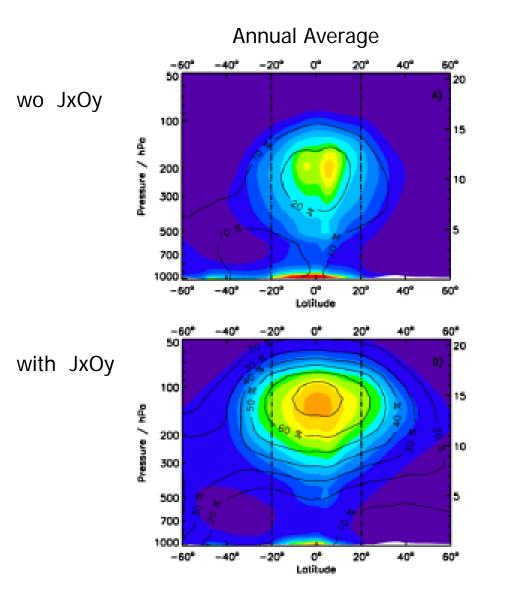

Reaction	$k \text{ cm}^{-3} \text{ molecule}^{-1} \text{ s}^{-1}$	Notes	Reaction	$k \text{ cm}^{-3} \text{ molecule}^{-1} \text{ s}^{-1}$	Notes
$I + O_3 \rightarrow IO + O_2$	$2.1 \times 10^{-11} e^{(-830/T)}$	1	$CH_3I + OH \rightarrow I + H_2O + HO_2$	$2.90 \times 10^{-12} e^{(-1100/T)}$	3
$IO + O_3 \rightarrow OIO + O_2$	3.6×10^{-16}	2	$I + NO_2 (+ M) \rightarrow INO_2 (+ M)$	$k_0 = 3 \times 10^{-31} \times (T / 300)^{-1}$	3 ⁱ
$I + HO_2 \rightarrow HI + O_2$	$1.5 \times 10^{-11} e^{(-1090/T)}$	3		$k_{\infty} = 6.6 \times 10^{-11}$	-
$IO + NO \rightarrow I + NO_2$	$7.15 \times 10^{-12} e^{(300/T)}$	1	$IO + NO_2 (+ M) \rightarrow IONO_2 (+ M)$	4) $k_0 = 6.5 \times 10^{-31} \times (T/300)^{-3.5}$	3 ⁱ
$IO + HO_2 \rightarrow HOI + O_2$	$1.4 \times 10^{-11} e^{(540/T)}$	1		$k_{\infty} = 7.6 \times 10^{-12} \times (T / 300)^{-1.5}$ $k_0 = 1.8 \times 10^{-32} \times (T / 300)^{-1}$	3 ⁱ
$IO + IO \rightarrow OIO + I$	$2.13 \times 10^{-11} e^{(180/T)} \times [1 + e^{(-p/191.42)}]$	1,4	$I + NO (+M) \rightarrow INO (+M)$	$k_0 = 1.8 \times 10^{-2.2} \times (7/300)^{-2.2}$ $k_{\infty} = 1.7 \times 10^{-11}$	3-
$IO + IO \rightarrow I_2O_2$	$3.27 \times 10^{-11} e^{(180/T)} \times [1 - 0.65 e^{(-p/191.42)}]$	1,4	$OIO + OH (+ M) \rightarrow HOIO_2 (+ M)$		14 ^j
$IO + OIO \rightarrow I_2O_3$	$w_1 \cdot \exp(w_2 \cdot T)^a$	4, 5, 68		$k_{\infty} = 7.76 \times 10^{-10} \times (T / 300)^{-0.8}$	14
$OIO + OIO \rightarrow I_2O_4$	$\mathbf{w}_1 \cdot \exp(\mathbf{w}_2 \cdot T)^{\mathbf{b}}$	4, 5, 6 ^g		x00 = / x (1 / 500)	
$I_2 + O \rightarrow IO + I$	1.25×10^{-10}	1			
$IO + O \rightarrow I + O_2$	1.4×10^{-10}	1			
$IO + OH \rightarrow HO_2 + I$	1.0×10^{-10}	7	Dee	ation	
$I_2O_2 \rightarrow OIO + I$	$w_1 \cdot \exp(w_2/T)^c$	5, 6, 8 ^g	Kea	ction	
$I_2O_2 \rightarrow IO + IO$	$\mathbf{w}_1 \cdot \exp(\mathbf{w}_2/T)^d$	5, 6, 88	CH	$_{3}I + h\nu \rightarrow CH_{3}O_{2} + I$	
$I_2O_4 \rightarrow 2 \text{ OIO}$	$w_1 \cdot \exp(w_2/T)^e$	5,88		$_{2I_2} + h\nu \rightarrow 2I^a$	
$I_2 + OH \rightarrow HOI + I$	1.8×10^{-10}	3		$_{2}IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	
$I_2 + NO_3 \rightarrow I + IONO_2$	1.5×10^{-12}	9			
$I + NO_3 \rightarrow IO + NO_2$	1.0×10^{-10}	1		$_{2}ICl + hv \rightarrow Cl + I^{a}$	
$OH + HI \rightarrow I + H_2O$	$1.6 \times 10^{-11} e^{(440/T)}$	1	-	$h\nu \rightarrow 2I$	
$I + IONO_2 \rightarrow I_2 + NO_3$	$9.1 \times 10^{-11} e^{(-146/T)}$	5	IO -	$+ hv \rightarrow I + O$	
$HOI + OH \rightarrow IO + H_2O$	2.0×10^{-13}	10	OIO	$O + h\nu \rightarrow I + O_2$	
$IO + DMS \rightarrow DMSO + I$	$3.2 \times 10^{-13} e^{(-925/T)}$	11	INC	$0 + h\nu \rightarrow I + NO$	
$INO_2 \rightarrow I + NO_2$	$1008 \times 10^{15} e^{(-13670/T)}$	12, 13, 1	4 INC	$D_2 + h\nu \rightarrow I + NO_2^b$	
$IONO_2 \rightarrow IO + NO_2$	$\mathbf{w}_1 \cdot \exp(\mathbf{w}_2 / T)^{\mathbf{f}}$	5,15		$NO_2 + h\nu \rightarrow I + NO_3$	
$INO + INO \rightarrow I_2 + 2NO$	$8.4 \times 10^{-11} e^{(-2620/T)}$	3		$I + hv \rightarrow I + OH$	
$INO_2 + INO_2 \rightarrow I_2 + 2NO_2$	$4.7 \times 10^{-13} e^{(-1670/T)}$	1			
$OIO + NO \rightarrow IO + NO_2$	$1.1 \times 10^{-12} e^{(542/T)}$	14		$+h\nu \rightarrow I + Br$	
$HI + NO_3 \rightarrow I + HNO_3$	$1.3 \times 10^{-12} e^{(-1830/T)}$	16		$+h\nu \rightarrow I + Cl$	
$IO + BrO \rightarrow Br + I + O_2$	$0.30 \times 10^{-11} e^{(510/T)}$	1	-	$h_2 + h\nu \rightarrow I + OIO^c$	
$IO + BrO \rightarrow Br + OIO$	$1.20 \times 10^{-11} e^{(510/T)}$	1	I ₂ O	$h_3 + h\nu \rightarrow IO + OIO^c$	
$I + BrO \rightarrow IO + Br$	1.44×10^{-11}	17, 18, 1	9 I ₂ O	$h_4 + h\nu \rightarrow OIO + OIO^c$	
$IO + CIO \rightarrow I + OCIO$	$2.585 \times 10^{-12} e^{(280/T)}$	1	-		
$IO + CIO \rightarrow I + CI + O_2$	$1.175 \times 10^{-12} e^{(280/T)}$	1			
$IO + CIO \rightarrow ICI + O_2$	$0.940 \times 10^{-12} e^{(280/T)}$	1			
$IO + BT \rightarrow I + BTO$	2.49×10^{-11}	18, 19	$\sim 15 \text{ sne}$	ecies; ~60 reactions	3
$IO + NO_3 \rightarrow OIO + NO_2$	9.0×10^{-12}	20	10 300		-
$IO + CH_3O_2 \rightarrow CH_2O + I + HO_2$		2 ^h			
		_			

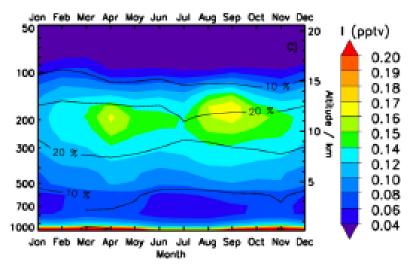
Saiz-Lopez et al., ACP, 2014.

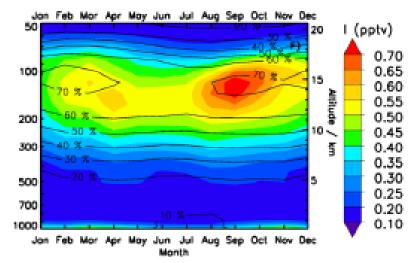
Photolysis Rate of: I_2O_2 , I_2O_3 , I_2O_4

Reaction

```
CH_3I + h\nu \rightarrow CH_3O_2 + I
CH_2I_2 + h\nu \rightarrow 2I^a
CH_2IBr + h\nu \rightarrow Br + I^a
CH_2ICl + h\nu \rightarrow Cl + I^a
I_2 + h\nu \rightarrow 2I
IO + hv \rightarrow I + O
OIO + h\nu \rightarrow I + O_2
INO + hv \rightarrow I + NO
INO_2 + h\nu \rightarrow I + NO_2^b
IONO_2 + h\nu \rightarrow I + NO_3
HOI + hv \rightarrow I + OH
IBI + hv \rightarrow I + BI
ICl + h\nu \rightarrow I + Cl
I_2O_2 + h\nu \rightarrow I + OIO^c
I_2O_3 + h\nu \rightarrow IO + OIO^c
I_2O_4 + h\nu \rightarrow OIO + OIO^c
```

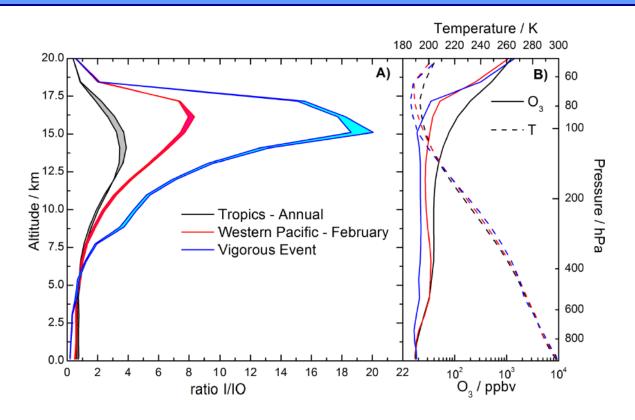


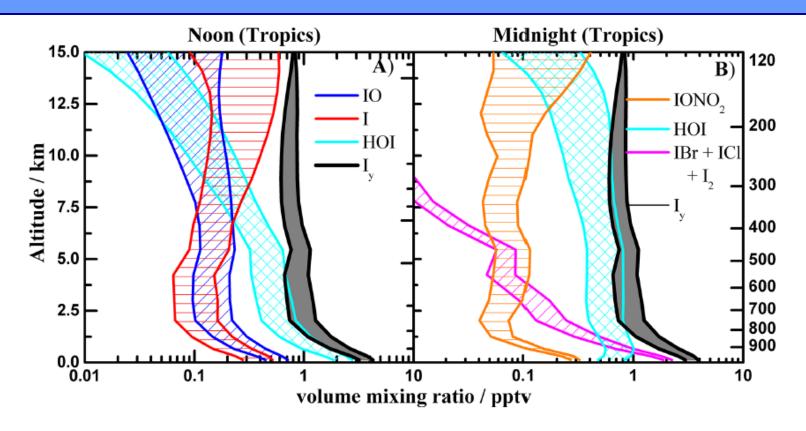

Figure 1. Absorption cross-sections of the higher iodine oxides I_xO_y ($x = 2, y \ge 2$). Gas phase experimental spectra tentatively assigned to I_2O_2 and I_2O_3 (Gómez Martín et al., 2005, 2007; Spietz et al., 2005) are plotted in blue and black respectively. The I_2O_2 spectrum has been smoothed by fitting a polynomial through it. The red line corresponds to the absorption spectrum of I_2O_4 in water (Russell Saunders, personal communication).


Photolysis of IxOy increase reactive IOx!

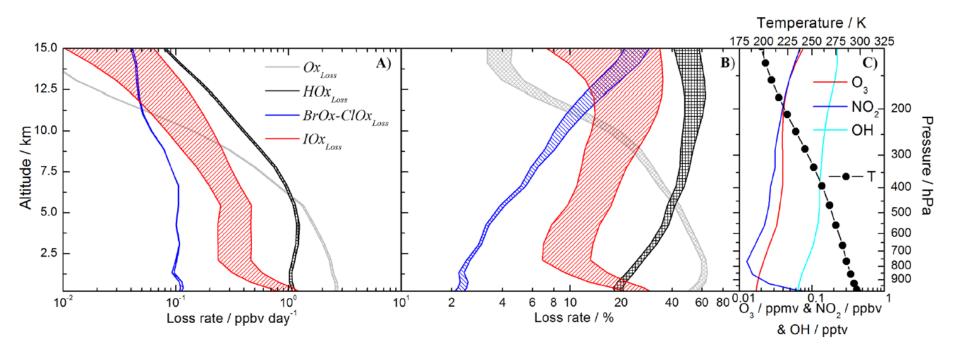
Saiz-Lopez et al., ACP, 2014.

Tropospheric Iodine Ring




Zonally Averaged Seasonal Evolution

Tropospheric Iodine Ring


Figure 6. (a) Vertical profiles for the I / IO ratio averaged over different regions and periods of time: (black) annual tropical (20° N– 20° S) averages; (red) Western Pacific (WP) warm pool during February; (blue) at the midpoint of a strong convective cell within the WP region during a 3-day period in February. The upper and lower limits correspond to simulations with the *Base* and $J_{I_xO_y}$ schemes, respectively. (b) The vertical variation of O₃ abundances and temperature for each region and period of time.

Tropospheric Iodine Budgets

Figure 3. Lower and upper limits of I_y abundances within the tropical troposphere (20° N–20° S): (a) main inorganic species at noon (11:30–12:30 LT); (b) major I_y species at midnight (23:30–00:30 LT). The lower limit corresponds to the *Base* scheme, while the upper limit is for the $J_{I_xO_y}$ scheme.

Tropospheric Iodine Odd-Oxygen Loss

Figure 13. Modelled range of odd oxygen destruction for each of the ozone depleting families: (a) Annual total loss rates for the O_X , HO_X , BrO_X - ClO_X and IO_X families within the tropical troposphere (20° N–20° S); (b) Percentage contribution of each family to the total loss rate for each scheme; (c) Vertical profiles of O_3 , NO_2 , OH and temperature within the tropics. Lower and upper limits of the range are for the *Base* and $J_{I_XO_Y}$ schemes, respectively.

Summary of Tropospheric Iodine

- Here we presented a comprehensive global modeling experiment aimed at estimating lower and upper limits of the inorganic iodine burden and its impact of tropospheric ozone.
- To define the range of inorganic iodine loading, partitioning and impact, two set of simulations were conducted with and without photolysis of I_xO_y oxides (I_2O_2 , I_2O_3 , and I_2O_4).
- Results show the most abundant daytime iodine species throughout the middle to upper troposphere is atomic iodine.
 - Annual tropical abundance of 0.15-0.55 pptv.
- Like atomic Br, we propose a "tropical ring" of atomic iodine.
 - Located between ~11-14km and 30°N-30°S.
 - I/IO ratios of up to a factor of 20 (convective regions).
- With I_xO_y photolysis included we derive for IOx odd-oxygen loss an upper limit of approximately 27% (MBL), 14% (Free Troposphere), and (27% UT) of the total loss.
- We suggest that iodine sources and its chemistry need to be included in global tropospheric chemistry models.

Thank you for your attention!