Update on Fast-J codes

Michael Prather (UCI), Philip Cameron-Smith (LLNL), et al.

Funded by DOE-BER SciDAC

LLNL-PRES-667521

Part of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

□ Fast-J: Calculates radiative transfer for single column with full scattering for a single column.

- Currently uses grid-box averaged clouds. (not ideal)
- Currently setup for Super-fast mechanism, but can be easily extended to other mechanisms.

Cloud-J: Wraps around Fast-J, calling it multiple times to handle cloud overlap.

Good results with just 4 columns.

□**Solar-J**: Extends Fast-J to the additional wavelengths needed to replace solar heating from RRTMG.

- Significantly improve on the acattering assumptions made by RRTMG.
- Currently being tested at UCI.

fast-JX ver-6.8 standalone CTM code UCI FJX v6.8 JPL10 (14Mar2011) + upto 3 T's or P'a - requires JX v6.8 (Sep2012)

62		18	141 20	· · ·	up co 5 i	5 01 1 4	. requi
x-sect:	1	02		3	180.00	260.00	300.00
x-sect:	2	03		3	218.00	260.00	295.00
x-sect:	3	03(1D)		3	180.00	260.00	300.00
x-sect:	4	NO	х	1	298.00	200.00	500.00
x-sect:	5	H2COa	~	2	223.00	298.00	
x-sect:	6	H2COb		2	223.00	298.00	
x-sect:	7	н202		2	200.00	300.00	
x-sect:	8	СНЗООН		1	298.00	500.00	
x-sect:	9	NO2		3	200.00	234.00	294.00
x-sect:	10	NO3		2	190.00	298.00	
x-sect:	11	N205		2	233.00	300.00	
x-sect:	12	HNO2		1	298.00		
x-sect:	13	HNO3		2	200.00	300.00	
x-sect:	14	HNO4		1	298.00		
x-sect:	15	с1ю3а	х	2	200.00	300.00	
x-sect:	16	c1no3b	х	2	200.00	300.00	
x-sect:	17	c12	х	2	200.00	300.00	
x-sect:	18	нос1	х	1	298.00		
x-sect:	19	0010	х	1	204.00		
x-sect:	20	c12o2	х	1	190.00		
x-sect:	21	c10	х	1	298.00		
x-sect:	22	BrO	х	1	298.00		
x-sect:	23	BrNO3	х	2	200.00	300.00	
x-sect:	24	HOBr	х	1	298.00		
x-sect:	25	BrCl	х	2	200.00	300.00	
x-sect:		N20	х	2	200.00	300.00	
x-sect:	27	CFC13	х	2	220.00	300.00	
x-sect:		CF2C12	х	2	220.00	300.00	
x-sect:		F113	х	2	210.00	300.00	
x-sect:	30	F114	х	2	210.00	300.00	
x-sect:	31	F115	х	1	298.00		
x-sect:	32	cc14	х	2	200.00	300.00	
x-sect:	33	сн3с]	х	2	200.00	300.00	
x-sect:	34	MeCC13	х	2	200.00	300.00	
x-sect:		сн2с12	х	2	200.00	300.00	
x-sect:	36	CHF2C1	х	2	200.00	300.00	
x-sect:	37	F123	х	2	210.00	295.00	
x-sect:	38	F141b	х	2 2	200.00	300.00	
x-sect:	39	F142b	х	2	210.00	298.00	
x-sect:	40	CH3Br	х	2	200.00	300.00	
x-sect:	41	H1211	х	2	200.00	300.00	
x-sect:	42	H1301	х	2	200.00	300.00	
x-sect:	43	н2402	х	2	200.00	300.00	

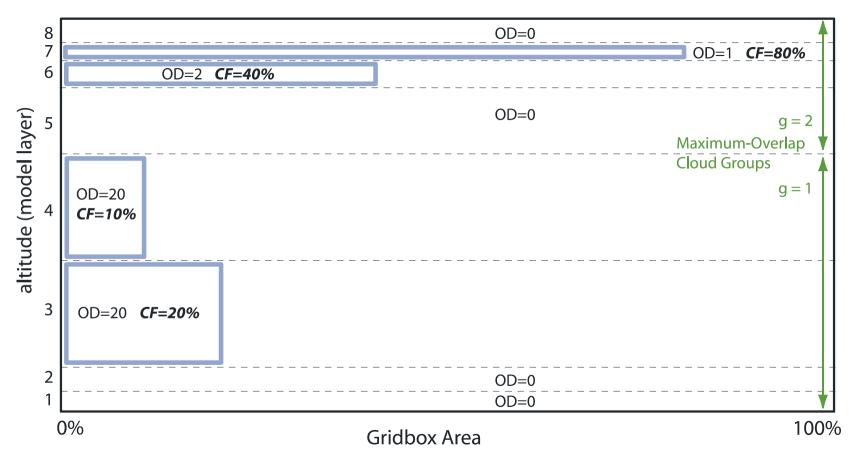
Fast-JX v7.0b F90 CAM5 implementation

Fast-JX v7.1 F90 WACCM (<200 nm)

Fast-JX v7.2 F90 cloud-J for UCI CTM

<pre>x-sect: x</pre>	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	CH2Br2 CHBr3 CH3I CF3I OCS PAN CH3NO3 ActAld MeVK MeAcr GlyAld MEKetO PrAld MGlyxl Glyxla Glyxlb Glyxlc	p p p p p	2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 1 1 2 1 3 2 2 2 2	210.00 210.00 243.00 243.00 200.00 250.00 298.00 177.00 298.00 177.00 298.00 177.00 177.00 177.00 177.00	298.00 300.00 300.00 298.00 300.00 566.00 999.00 566.00 999.00 999.00 999.00	999.00 999.00
			p				
x-sect: x-sect:	60 61	Glyxlc Acet-a	p p	2 3	177.00 177.00	999.00 566.00	999.00
x-sect:	62	Acet-b	р р	2	400.00	999.00	333.00

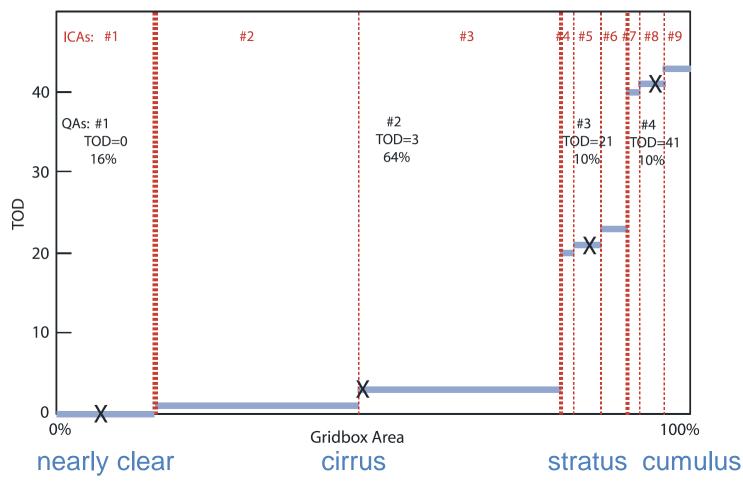
fast-J, an update

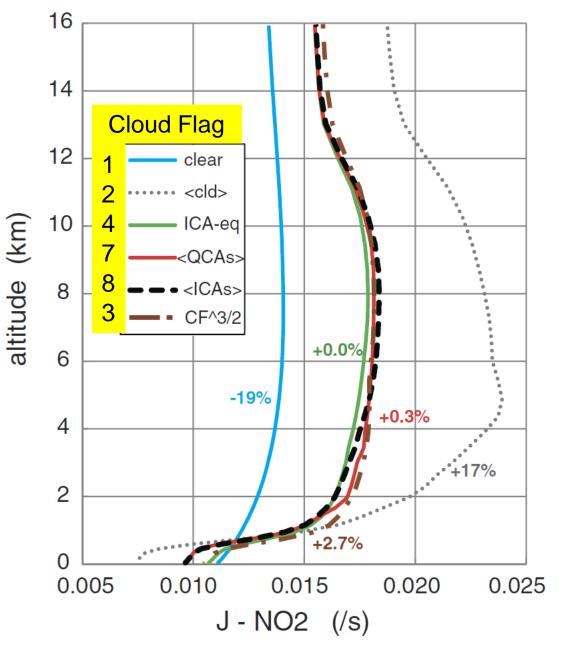

Full Fortran-90 implementation in CAM5 linked to aerosols

Philip Cameron-Smith & Michael Prather CESM Chemistry-Climate WG 18 Feb 2015

_____ UCI fast-JX cloud-JX v-7.2b (12/2015) ! !DESCRIPTION: decides what to do with cloud fraction, including generate Independent Column Atmospheres (ICAs) for a max-ran cloud overlap algorithm, and Quadrature Colm Atmos (QCAs). MODULE CLD_SUB_MOD ! USES:USE.CMN_FJX_MOD ... USE FJX_SUB_MOD, ONLY : EXITC, PHOTO_JX ... IMPLICIT NONE <u>/</u>¶ ! !PUBLIC SUBROUTINES: <u>/</u>¶PUBLIC .: CLOUD_JX CONTAINS 1 SUBROUTINE CLOUD_JX (U0,SZA,REFLB,SOLF,FG0,LPRTJ,PPP,ZZZ,TTT, & DDD,RRR,000, LWP,IWP,REFFL,REFFI, CLDF,CWC, & AERSP, NDXAER, L1U, ANU, VALJXX, NJXU, &implicit.none CLOUD_JX is fractional cloud cover driver for PHOTO_JX (fast-JX v7.2) calc J's for a single column atmosphere (aka Indep Colm Atmos or ICA) needs P, T, O3, clds, aersls; adds top-of-atmos layer from climatology needs day-fo-year for sun distance, SZA (not lat or long)

Jessica L. Neu,¹ Michael J. Prather,¹ and Joyce E. Penner²


In-Cloud properties (OD) and Cloud Fraction specified



Jessica L. Neu,¹ Michael J. Prather,¹ and Joyce E. Penner²

Cloud Quadrature picks representative ICAs from 4 cloudy types or just uses average clouds within each type

J-values for NO_2 calculated for a single grid box (0000-0300H 1 Jan 2005, T42, J=32&I=4) with a range of clouds from cumulus (1-9 km, small cloud fraction, OD ~20 per layer) to cirrus (11-14 km, large cloud fraction, OD ~ 0.4).

The max-ran overlap model has 10 ICAs. The true answer is the average over the ICAs (<ICAs>). The 4-point quadrature atmospheres (<QCAs>) and the single ICA-equivalent atmosphere give similar result with pressure-weighted bias errors of <1%, but the clear sky and averaged cloud cover (<cld>) have large mean bias errors of - 19% and +17%, respectively. The pseudo-random approximation pRAN (CF^{3/2}) has +2.7% bias.

• End of presentation.

cloud-J, what's new?

Full Fortran-90 version being tested in UCI CTM

limited data passed to CLOUD_JX (only interface to rest of model)

call CLOUD_JX (U0,SZA,REFLB,SOLF,FG0,LPRTJ,PPP,ZZZ,TTT, & DDD,RRR,OOO, LWP,IWP,REFFL,REFFI, CLF,CWC, & AERSP,NDXAER,L1_,AN_,VALJXX,JVN_, & CLDFLAG,NRANDO,IRAN,L3RG,NICA,JCOUNT)

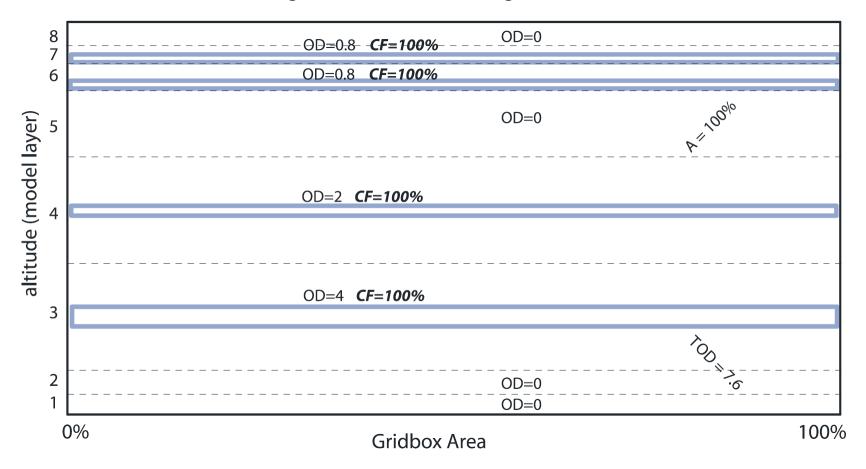
Only needs from CAM are profiles of 5 cloud quantities

LWP/IWP = Liquid/Ice water path (g/m2) REFFL/REFFI = R-effective(microns) in liquid/ice cloud CLF = cloud fraction (0.0 to 1.0)

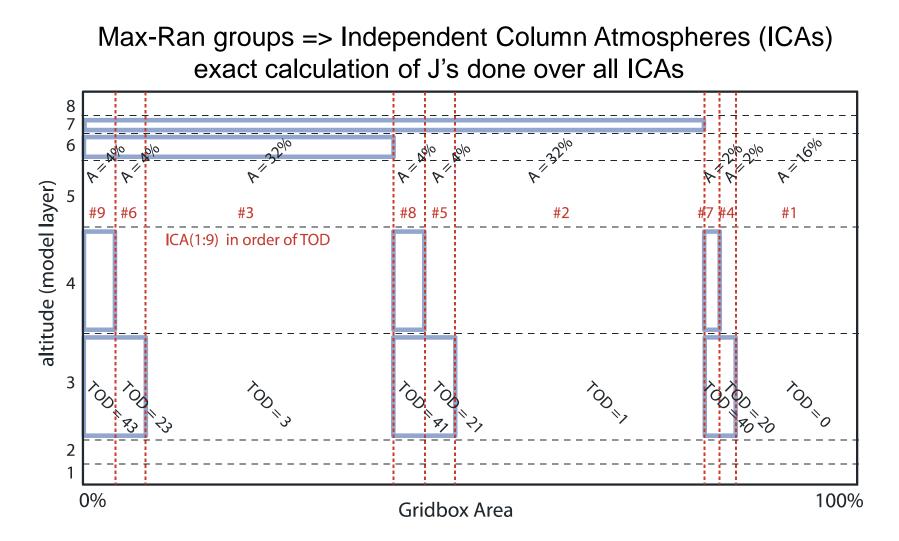
and profiles of aerosol quantities

AERSP = aerosol path (g/m2) NDXAER = aerosol index type cloud-J, what's new?

Full Fortran-90 version being tested in UCI CTM


for now, many options for approximating fractional clouds

ICLOUD IX: differen	t cloud schemes (4:8 require max-ran overlap algorithm)
! CLDFLAG = 1 :	
	Averaged cloud cover
	cloud-fract**3/2, then average cloud cover
	Average direct solar beam over all ICAs, invert to get clouds
	Random select NRANDO ICA's from all(Independent Column Atmos.)
! CLDFLAG = 6 :	Use all (up to 4) quadrature cloud cover QCAs (mid-pts of bin)
! CLDFLAG = 7 :	Use all (up to 4) QCAs (average clouds within each Q-bin)
! CLDFLAG = 8 :	Calcluate J's for ALL ICAs (up to 20,000 per cell!)
/	


Jessica L. Neu,¹ Michael J. Prather,¹ and Joyce E. Penner²

Averaged Cloud across grid box

Jessica L. Neu,¹ Michael J. Prather,¹ and Joyce E. Penner²

what's new? Solar-J

Solar-J is Cloud-J extended beyond 800 nm with RRTMG-SW bands and thus will do solar heating

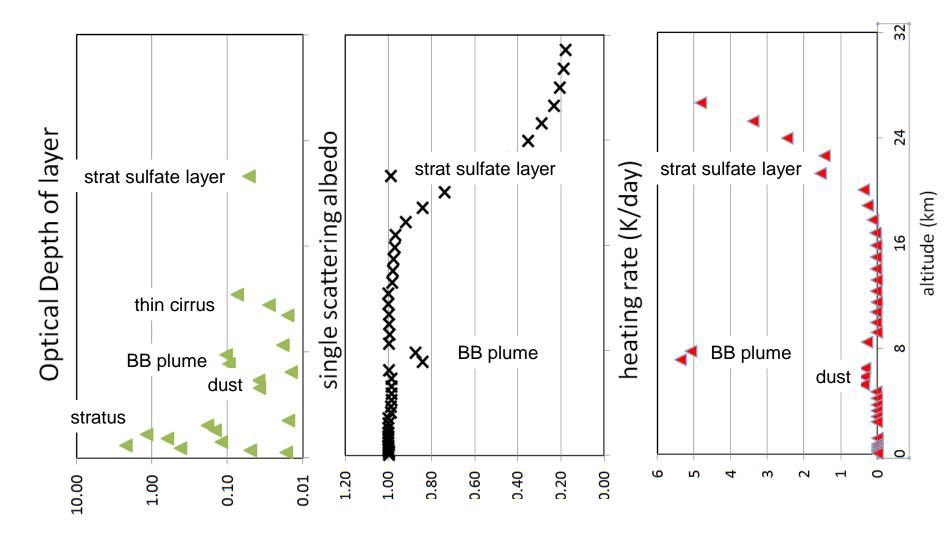
Solar-J includes direct and diffuse PAR (with 4-angle diffuse field)

Solar-J is funded by DOE BER and will be implemented as a drop-in replacement for Cloud-J

First *off-line* tests of Solar-J vs RRTMG-SW are now underway.

A sample atmosphere for Solar-J

 $SZA = 13.6^{\circ}$


Aerosol + Cloud OD:5.50Biomass Burning plume:0.20Dust layer:0.08

Solar flux (60% of solar energy < 850 nm)

Incoming:	805 W/m ²
Reflected diffuse:	298 W/m ²
Absorbed in atmosphere:	87 W/m ²
Absorbed at surface:	420 W/m ²

 $\begin{array}{ccc} Photosynthetic (PAR) \\ Direct: & 0.3 \ \mu E/m^2/s^{**} \\ Diffuse: & 1265 \ \mu E/m^2/s \end{array}$

** Note that with 2-stream RRTMG-SW, the OD would be rescaled from 5 to ~1 and the Direct PAR would be much greater.

ast-J s	olar bi	ns]	RRTM	<u>I-SW</u>	solar	bins
	/elength	Solar	PAR	-	Wavelength range		Solar	
#	(nm)	(W/m^2)	(µE)		#	(nm)	(W/m²)
1	187	0.01			28	200	263	3.12
2	191	0.02			27	263	345	50.15
3	193	0.02] .		345	441	129.5
4	196	0.01			25	441	625	347.2
5	202	0.08		1	_24_	_625_	<u>778</u>	218.1
6	208	0.04			23	778	1242	345.7
7	211	0.09			22	1242	1299	24.29
8	214	0.11			21	1299	1626	102.9
9	261	4.84] / ;	20	1626	1942	55.63
10	267	2.97			19	1942	2151	22.43
11	277	2.23			18	2151	2500	23.73
12	295	3.97			17	2500	3077	20.36
13	303	5.03			16	3077	3846	12.11
14	310	3.23			29	3846	12195	12.79
15	316	5.59		ļ / •				
16	333	22.98	3	Fast-		ld nee	d to ad	dd 9 supe
17	380	80.45	125					
18 41	2-850	696.40	2026		amol		v ~40 č	added cal

Overlap bin 18 vs 24-25 (14 bins) will become Fast-J bins 18a,b,c,d,e.