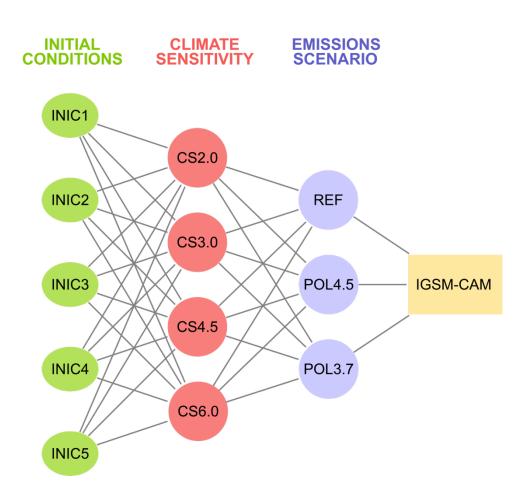

Evaluating the role of natural variability in assessments of climate change impacts on air quality

Fernando Garcia-Menendez, Erwan Monier, Rebecca K. Saari, **Noelle E. Selin**

CESM Chemistry-Climate Working Group Meeting 16 February 2015

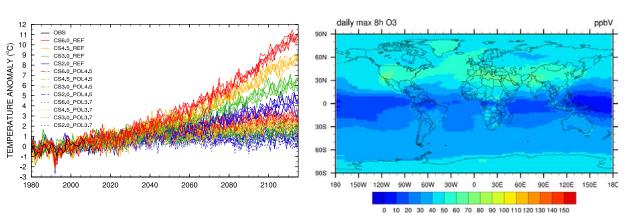

Modeling climate change impacts on air quality

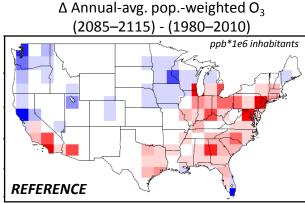
- Uncertainty and variability are associated with climate simulations and propagate to projections of air quality
- Characterizing uncertainty across the complete human-climate system is essential to generate policy-relevant insights

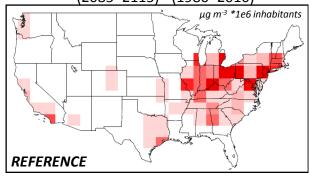
Ensemble simulation of 21st century climate change

We focus on the 3 main sources of uncertainty in climate projections:

- 1. Emissions scenario:
 - <u>Reference</u>: No policy
 2100 radiative forcing = 9.7 W/m²
 - <u>Policy 4.5</u>: Stabilization
 2100 radiative forcing = 4.5 W/m²
 - <u>Policy 3.7</u>: Stringent stabilization
 2100 radiative forcing = 3.7 W/m²
- 2. Climate model response [1]
 - Climate sensitivity = 2.0°C, 3.0°C, 4.5°C or 6.0°C
- 3. Natural variability
 - Multidecadal simulations
 - 5 different initializations


Air quality modeling framework


MIT IGSM


CESM

BenMAP

Δ Annual-avg. pop.-weighted PM_{2.5} (2085–2115) - (1980–2010)

-9

• Atmospheric emissions fixed at yr-2000 levels to estimate

Env. Benefits Mapping & Analysis Program (BenMAP):

MIT IGSM: Policy scenarios and climate projections

Community Earth Systems Model (CESM):

Global atmospheric chemistry and air quality

climate penalty on air quality

Health and economic impacts

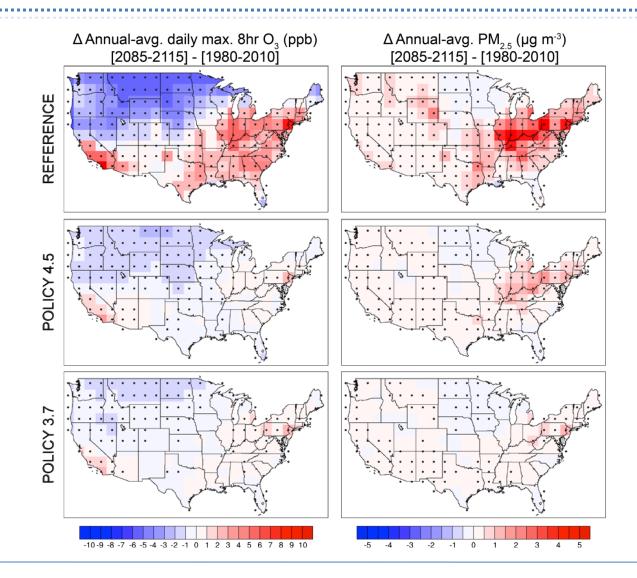
• 30-yr simulations used to characterize climate (1981→2010, 2036→2065, 2085→2115)

Climate and policy scenarios

Human System Emissions Prediction and Policy Analysis (EPPA) National and/or Regional Economic Development, Emissions & Land Use Agriculture, Land use Trace gas CO₂, CH₄, CO, Human forestry, fluxes (CO₂ N₂O, NOx, SOx, health change bio-energy, NH₃, CFCs, effects CH_4 , N₂O) ecosystem and policy HFCs, PFCs, SFA productivity constraints VOCs, BC, etc. **Earth System** Atmosphere 2-or 3-Dimensional (CAM3) Dynamical, Physical & Chemical Processes Volcanic forcina Coupled Ocean, Atmosphere, and Land Solar forcing Land Ocean 2- or 3-Dimensional Water & Energy Budgets (CLM) Dynamical, Biological, **Biogeochemical Processes** Chemical & Ice Processes (TEM & NEM)

MIT Integrated Global System Model:

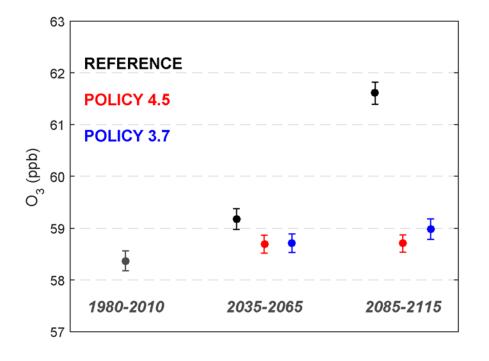
Two major coupled components:


- Earth system model
- Economic projection and policy analysis model

Important features:

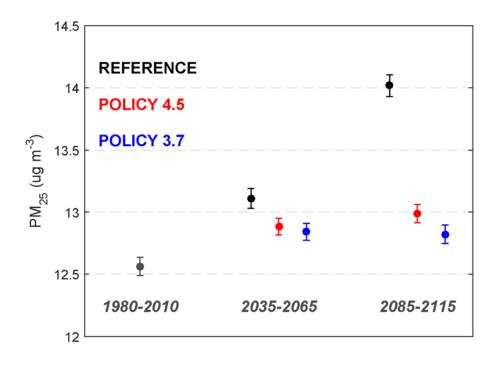
- Single consistent framework for greenhouse gas emissions policy and climate change scenarios
- Ability to alter climate system response
- Computationally efficient

5


Climate penalty on U.S. air quality

Climate penalty and policy benefits for U.S. O₃

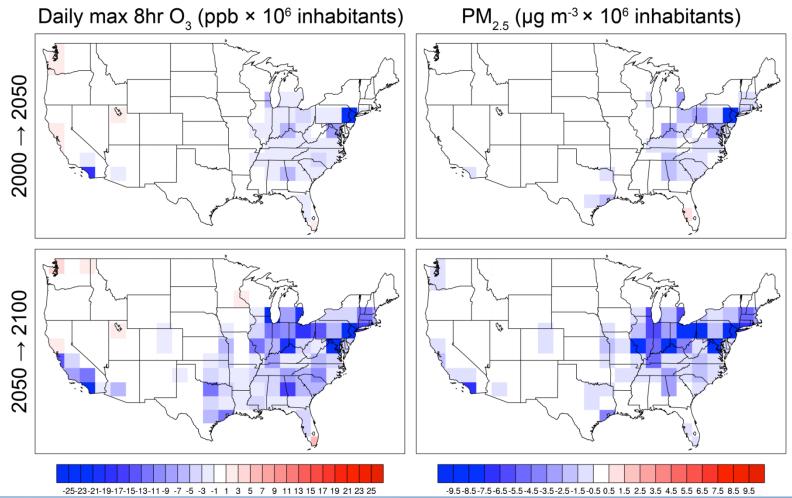
US-average population-weighted daily max. 8hr O₃:


Climate Penalty		Annual avg.	Summer avg.
(ppb)		daily max. 8-hr O ₃	daily max. 8-hr O ₃
REF	2000 → 2050	0.8 ± 0.3	3.4 ± 0.7
	2000 → 2100	3.2 ± 0.3	10.4 ± 0.7
POL45	2000 → 2050	0.4 ± 0.2	2.0 ± 0.6
	2000 → 2100	0.4 ± 0.2	2.3 ± 0.6
POL37	2000 → 2050	0.3 ± 0.3	1.6 ± 0.7
	2000 → 2100	0.6 ± 0.3	2.3 ± 0.6

Policy Impacts		Annual avg.	Summer avg.
(ppb)		daily max. 8-hr O ₃	daily max. 8-hr O ₃
REF → P45	2050	-0.5 ± 0.3	-2.0 ± 0.7
	2100	-2.9 ± 0.3	-8.7 ± 0.7
REF \rightarrow P37	2050	-0.5 ± 0.3	-2.1 ± 0.7
	2100	-2.6 ± 0.3	-8.3 ± 0.7

Climate penalty and policy benefits for U.S. PM_{2.5}

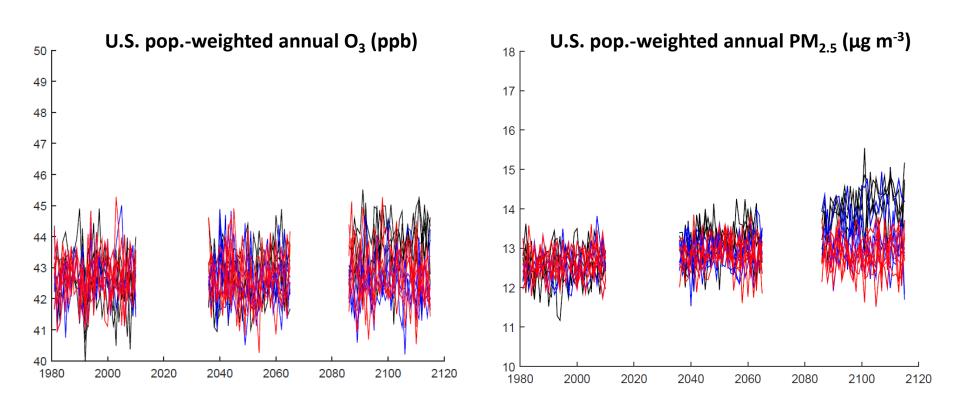
US-average population-weighted $PM_{2.5}$ (µg m⁻³):


Climate Penalty		Annual avg.
(µg m ⁻³)		PM _{2.5}
REF	2000 → 2050	0.5 ± 0.1
	2000 → 2100	1.5 ± 0.1
POL45	2000 → 2050	0.3 ± 0.1
FOL43	2000 → 2100	0.4 ± 0.1
POL37	2000 → 2050	0.2 ± 0.1
	2000 → 2100	0.2 ± 0.1

Policy Impacts (μg m ⁻³)		Annual avg. PM _{2.5}
REF \rightarrow P45	2050	-0.2 ± 0.1
KEF 7 F45	2100	-1.0 ± 0.1
REF \rightarrow P37	2050	-0.3 ± 0.1
NEF 7 P37	2100	-1.2 ± 0.1

Emissions scenario

Avoided annual climate penalty under stabilization scenario P45 relative to Reference:



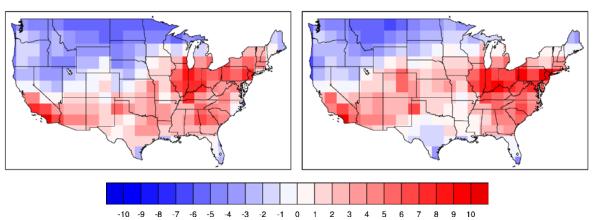
Climate model response

Climate penalty on annual daily max. 8hr O₃ and average PM_{2.5} from 2000 to 2100 under Reference scenario: Climate Sensitivity = 2.0° C Climate Sensitivity = 3.0°C Climate Sensitivity = 4.5° C $\Delta O_3 (ppb)$ -10 -3 Q 10 PM_{2.5} (µg m⁻³) 8 8 \triangleleft -5 2 3 5 -3 -2 0 4 -4 -1

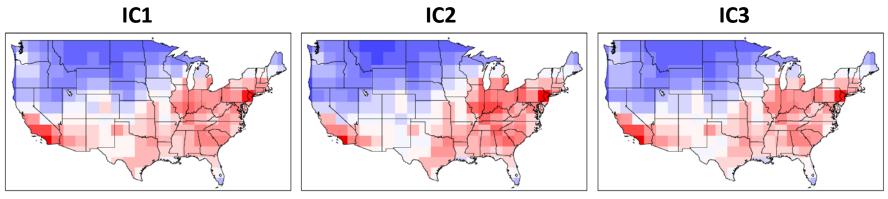
Internal variability in U.S. air quality projections

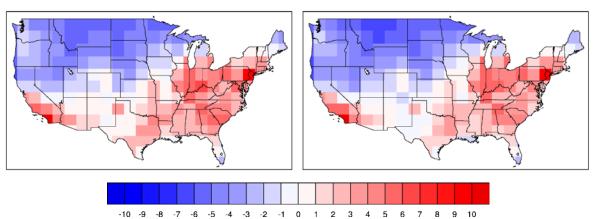


ReferencePolicy 4.5Policy 3.7

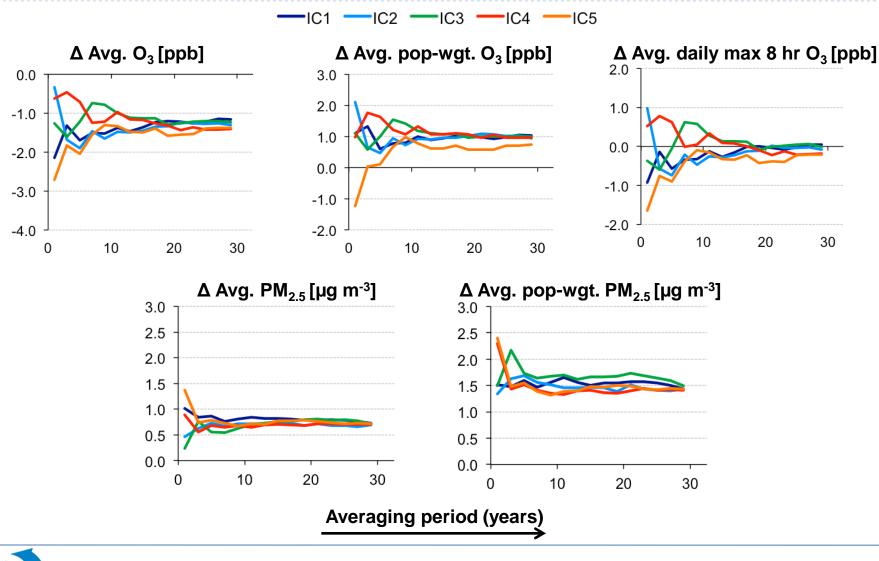

Influence of natural variability

Climate penalty on annual-average daily max. 8hr (Δ ppb) from 2000 to 2100 under Reference scenario estimated from <u>1-year simulations</u>:


IC5


Considering variability in air quality projections

Climate penalty on annual-average daily max. 8hr (Δ ppb) from 2000 to 2100 under Reference scenario estimated from <u>30-year simulations</u>:



IC5

Considering variability in air quality projections

Climate uncertainty in air quality impacts assessments

- Substantial uncertainties associated with climate projections significantly influence simulations of future air quality.
- Beyond anthropogenic emissions scenarios, large uncertainty associated with natural variability and climate model response.
- Simulations > 15 years may be needed to capture anthropogenicforced climate signal.
- Projections of climate change impacts before 2050 remain considerably uncertain.
- Propagation of uncertainty is stronger for regional-scale impacts and extremes.

Acknowledgments

- U.S. Environmental Protection Agency
- MIT Joint Program on the Science and Policy of Global Change
- Comments or questions? fgarciam@mit.edu or selin@mit.edu

