Community Earth System Model

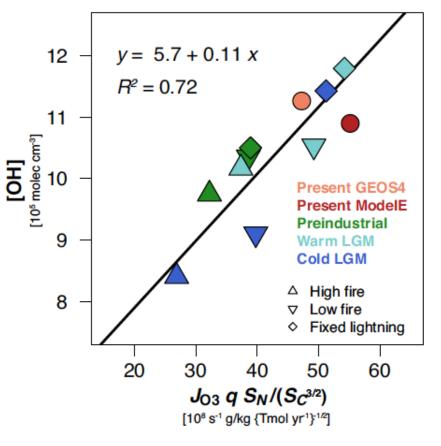
Comparing present-day methane lifetime estimates within CAM4-chem and CAM5-chem configurations

Geosci. Model Dev. Discuss., 7, 8875–8940, 2014 www.geosci-model-dev-discuss.net/7/8875/2014/ doi:10.5194/gmdd-7-8875-2014 © Author(s) 2014. CC Attribution 3.0 License. Geoscientific Model Development

This discussion paper is/has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD if available.

Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)

S. Tilmes¹, J.-F. Lamarque¹, L. K. Emmons¹, D. E. Kinnison¹, P.-L. Ma², X. Liu³, S. Ghan², C. Bardeen¹, S. Arnold⁴, M. Deeter¹, F. Vitt¹, T. Ryerson⁵, J. W. Elkins⁵, F. Moore⁵, and R. Spackman⁶, Val. Martin



Question: What controls Methane Lifetime in CESM?

Naik et al., 2013

ACCMIP Models	^T CH ₄ (years)				
_	1850	1980	2000		
_	9.3	8.8	8.4		
	9.1	10.1	10.0		
	8.7	9.7	9.4		
	8.9	9.6	9.1		
	8.6	9.7	9.6		
	8.9	9.7	9.4		
	11.9	11.4	10.6		
	10.4	9.8	9.2		
	11.6	12.1	11.6		
	10.1	10.7	10.5		
	*	*	8.7		
	8.2	7.5	7.1		
	10.7	9.9	9.2		
	9.7	9.6	9.1		
	9.8	*	9.9		
	15.0	14.7	14.0		
	10.1 ± 1.7	10.2 ± 1.7	9.7 ± 1.5		
	17.3	16.4	15.6		
-		10.2 ^{+0.9} _{-0.7} ,			
	Obs. estimates		11.2 ± 1.3		
_					

Murray et al., 2014 using GEOS-Chem

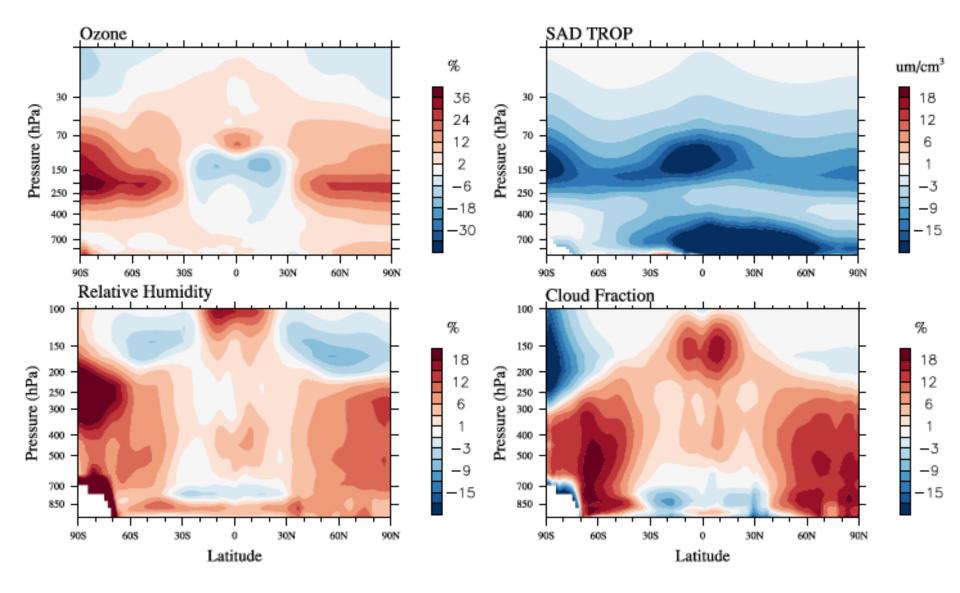
Experiments

CESM1.2.2, F2000 fixed SSTs, same emissions, about similar global lightning NOx burden, same chemistry (trop/strat. Chemistry)

- CAM5-chem vs CAM4-chem: 20 years free running
- Specified Dynamics SD-CAM5-chem, SD CAM4-chem (year 2000 emissions) Meteorology from 2000-2010.
- CAM5-MAM4-chem
- Sensitivity experiments to investigate changes in methane lifetime

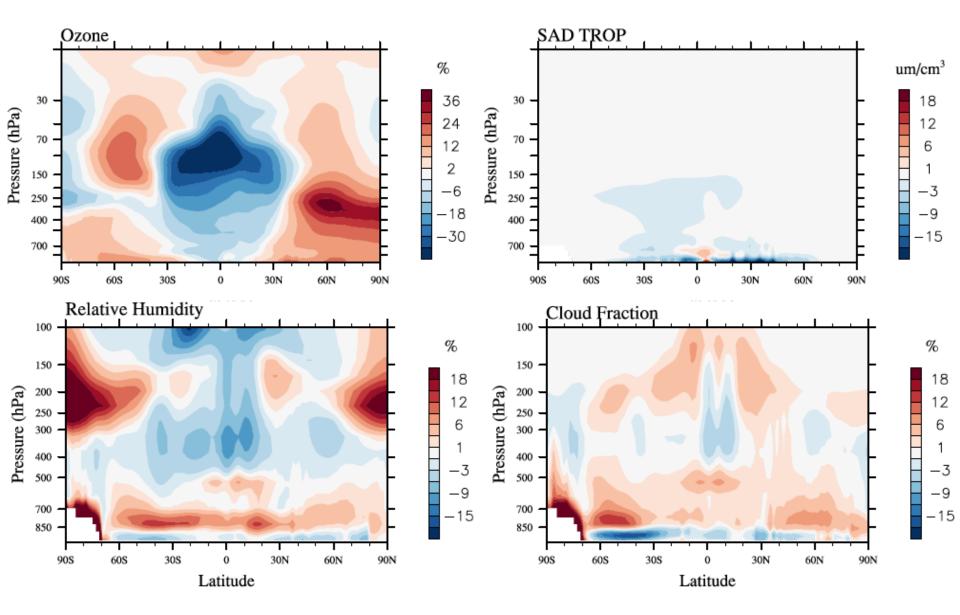
Differences between CAM4 and CAM5

CAM5-chem vs. CAM4-chem:

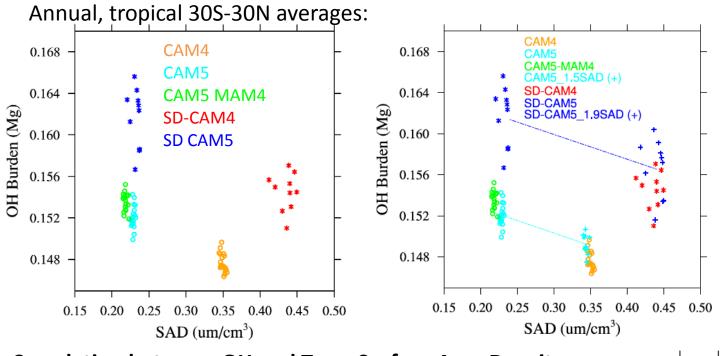

- Modal vs. bulk aerosol model
- Differences in treatment of cloud, convection, turbulent mixing
- 26L vs 30 horiz. Levels (56L for Specified Dynamics)
- -> different aerosol burden and Surface Area Density (SAD)
- -> influences heterogeneous and aqueous reaction in particular HOx, and NOx
- -> differences in chemistry

Global Budgets

CESM 1.2.2	CAM4-Chem	SD CAM4-Chem	CAM5-Chem	SD CAM5-Chem		
Sim. Years	20 years	2000-2009	20 years	2000-2009		
Meteorology	CAM4	MERRA (10%)	CAM5	MERRA (10%)		
Aerosol	BAM	BAM	МАМЗ	MAM3		
Vert. Res.	26L	56L	30L	56L		
CH ₄ Burden (Tg)	4153	4074	4103	4064		
CH ₄ Lifet. (yr)	8.82	8.35	8.31	7.83		
CO Burden (Tg)	308	299	289	283		
CO Lifet. (yr)	0.135	0.128	0.134	0.120		
O ₃ Burden (Tg)	310	309	310	313		
O ₃ Lifet. (days)	24	24	22	24		
O_3 Net. chem. ^a (Tg yr ⁻¹)	515	474	530	480		
O_3 STE (Tg yr ⁻¹)	344	357	390	362		
LNO _x (Tg N yr ⁻¹)	4.3	4.3	4.6	4.3		
Methane Lifetime:						
Free Running CAM4-chem: 8.82 yrs Specified Dynamics: CAM4-chem: 8.35 yr						
Ĵ ½ yr	→ ◆	² yr	Ĵ,	∕₂ yr		
Free Running CAM5-chem	ı: 8.31 yrs	Specified D	Specified Dynamics: CAM5-chem: 7.83 yr			


What are the drivers for differences in CH₄-Lifetime in CESM?

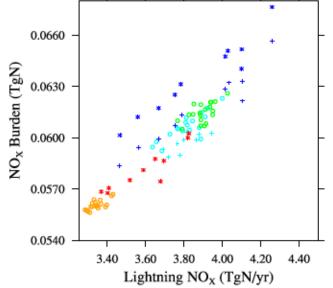
CAM5-chem minus CAM4-chem



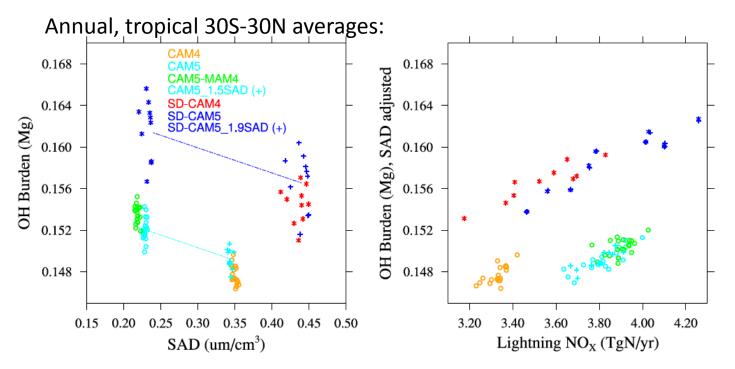
What are the drivers for differences in CH₄-Lifetime in CESM?

CAM5-chem minus SD-CAM5-chem

Correlations between OH burden and other variables



Correlation between OH and Trop. Surface Area Density:


- Increased het. reactions lead to increased uptake of HOx -> increased H₂O₂ -> reduction of OH
- -> changes in aerosol formation
- Increased uptake of N₂O₂ -> reduced NOx
- -> change in ozone

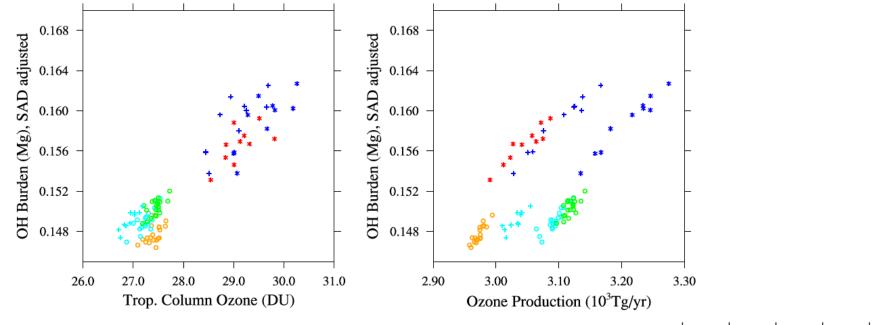
Sensitivity Experiments, adjusted SAD to CAM4-chem:

- CAM5-chem 1.5*SAD
- SD-CAM5-chem * 1.9SAD

Correlations between OH burden (adjusted to SAD)

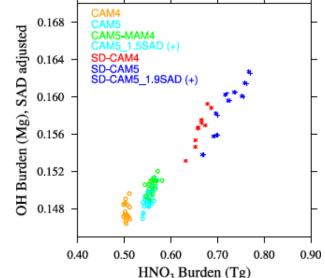
Differences in SAD important driver for CH₄-lifetime differences

-> leads to approximately half a year differences between CAM4 and CAM5

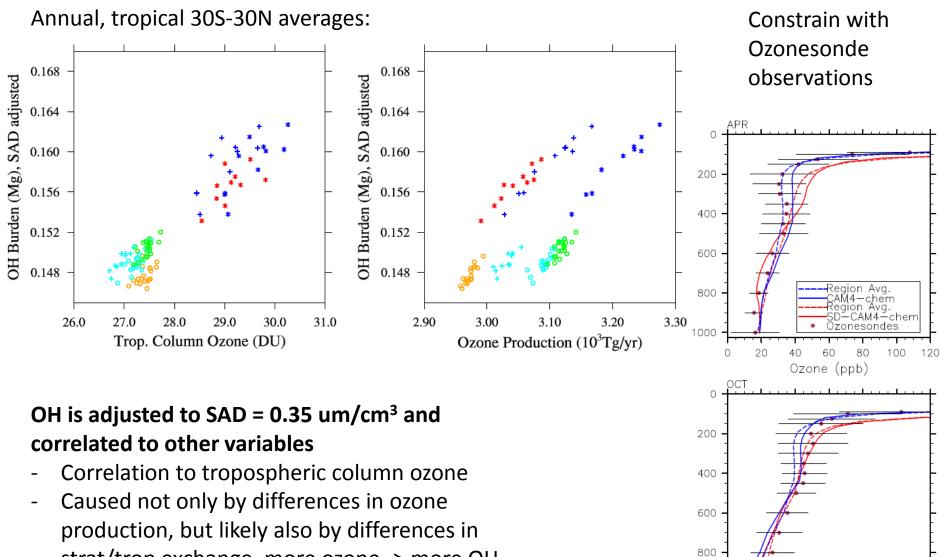

OH is adjusted to SAD = 0.35 um/cm^3 and correlated to other variables

- correlation to lightning NOx (LNOx)

-> Difference of LNOx explains half the differences between free running and specified dynamics simulations.


Correlations between OH burden (adjusted to SAD)

Annual, tropical 30S-30N averages:



OH is adjusted to SAD = 0.35 um/cm³ and correlated to other variables

- Correlation to tropospheric column ozone
- Caused not only by differences in ozone production, but likely also by differences in strat/trop exchange, more ozone -> more OH

Correlations between OH burden (adjusted to SAD)

Ozone (ppb)

strat/trop exchange, more ozone -> more OH

Summary

Important drivers for methane lifetime differences in CESM:

- Differences in tropospheric surface area density
- -> explain approximately half a year difference between CAM4 and CAM5
- Differences in lightning NOx (LNOx)
- -> explain about half the difference in CH₄-lifetime between free running and specified dynamics simulations
- Differences in tropospheric column ozone
- -> explain other half of the differences between free running and SD simulations,

likely caused by differences in trop/strat exchange