

Rim Fire Simulated in CESM/CARMA

Pengfei Yu¹, Owen Brian Toon¹, Charles Bardeen², Pablo Saide³ LARGE Team, AMS Team, HDSP2 Team, CRDS Team

> ATOC, LASP, University of Colorado at Boulder EECAR, ³University of Iowa

> > June 2015, CESM Workshop

CARMA is a Sectional Aerosol Microphysics/ radiation model coupled with CAM5

CAM5/CARMA Model

CARMA is coupled with CAM5 by Charles Bardeen, ACD, NCAR

CARMA has wider size range of aerosols than MAM

<u>POA includes biomass burning organics, anthropogenic organics, marine</u> <u>organics and biological particles.</u>

SEAC⁴RS - Southeast US: Aug-Sep, 2013

Model captures OC/BC in troposphere

MODIS shows Rim Fire plumes, Aug.2013

Aug.26

Aug.28

Aug.30

Conclusions in this Talk

- **Injecting Rim Fire emission at 600-700 mb;**
- CARMA predicts Rim Fire Aerosol Mass within data variability;
- CARMA predicts Rim Fire Aerosol Number within data variability;
- Rim Fire Aerosol is roughly 0.1-0.2 um in Radius;
- CARMA predicts Rim Fire Aerosol Surface Area and Volume within data variability;
- CARMA underestimates Rim Fire Extinction by a factor of 5;
 - **POA Aging Process is not modeled.**

CARMA shows transport of Rim fire smoke

Flight tracks and OC concentrations

CARMA missed extreme values of organics

Putting fire emission into 600-700 mb gives better performance

Putting fire emission into 600-700 mb gives better performance

Model Captures Particle Number Concentration

Model Captures Particle Surface Area and Volume Density

Effective radius of Rim Fire Smoke is 0.1-0.2 um

Model underestimates Aerosol Extinction at 600-700 mb from NASA LARGE and NOAA CRDS

SOA contributes to ~1% of Rim Fire Smoke by mass; SOA dominates in Upper Troposphere

CARMA only consider SOA partitioning

Model injected Aged Smoke

Conclusions

- CARMA can reproduce aerosol mass and number concentrations of rim fires with data's variability;
- Putting smoke emission in 600-700 mb gives better model performance.
- CARMA underestimates aerosol extinction coefficients;
- CARMA reproduces aerosol surface area and volume; the effective radius is 0.1-0.2 um.
- CARMA does show regional transport of smoke as observed by MODIS
 - CARMA injected aged smoke.

Contact Info:

Pengfei Yu

pengfei.yu@colorado.edu

University of Colorado, Boulder

Thanks Ryan Neely (Leeds) Christine Wiedinmyer (NCAR)

Yellowstone (NSF&NCAR)

@ Houston, SEAC⁴RS, Sep.2013

Putting fire emission into 600-700 mb gives better performance

