CESM Climate Variability & Change Working Group 9 February 2015

Optimal Atmospheric Excitation of AMOC on Decadal Time Scales in CCSM4

Grant Branstator, NCAR Andrey Gritsun, RAS

(Simplified, Quasi-gaussian) Fluctuation Dissipation Theorem (Leith, 1975; Deker&Haake, 1975; Risken, 1984)

Suppose have a discretized dynamical system with noise and a F-P eqn with unique solutions. Also assume gradients of the system PDF are well approximated by a Gaussian fit. Then the PDF-averaged response to weak forcing f is

$$r(t) = \int_{t_0}^t C(t - \tau) C^{-1}(0) f(\tau) d\tau$$

for
$$C(\tau) = \log - \tau$$
 cov matrix

Sufficient data to find C

Atmospheric applications:

- * Gritsun, Branstator (2007)
- * Gritsun, Branstator, Majda (2008)
- * Liu et al. (2012)

CCSM4 T31, 3deg, 26L 8000 year control

$$\begin{bmatrix} T(t) \\ S(t) \\ u(t) \\ v(t) \end{bmatrix} = r(t) = \mathbf{M}_t \overline{f} = \mathbf{M}_t \begin{bmatrix} \dot{T} \\ \dot{S} \\ \dot{u} \\ \dot{v} \end{bmatrix}$$

state of multivariate 3D fields is represented by 675 EOFs

CCSM4 T31, 3deg, 26L 8000 year control

$$\begin{bmatrix} T(t) \\ S(t) \\ u(t) \\ v(t) \end{bmatrix} = r(t) = \mathbf{M}_t \overline{f} = \mathbf{M}_t \begin{bmatrix} \dot{T} \\ \dot{S} \\ \dot{u} \\ \dot{v} \end{bmatrix}$$

t = 5 yrs singular value decomposition

Optimal N Atlantic Salinity Forcing of AMOC

5 year forcing; year 5 response

force 0-100m

Singular Value Decomposition

Optimal & CCSM4 Response of AMOC to Salinity Forcing force 0-100m

- FDT can be used to systematically study ocean response
- The leading patterns of AMOC variability do not depend on the existence of special atmospheric structures
- The effect of a given atmospheric pattern on AMOC depends strongly on details of its structure and of ocean dynamics
- The surface fields associated with AMOC anomalies depend on the atmospheric forcing

Optimal Salinity Forcing of AMOC

5 year forcing; year 5 response force 0-100m

SV1 35x 55%

-10

-8

-6 -4

-2 0

Sv

2 4

6

8

10

Optimal Salinity Forcing of AMOC

5 year forcing; year 5 response force 0-100m

SV1 35x 55%

Optimal Salinity Forcing of AMOC

5 year forcing; year 5 response force 0-100m

SV2 17x 14%

Optimal North Atlantic Temperature Forcing of AMOC

5 year forcing; year 5 response force 0-100m

SV1 34x

Optimal Salinity & Temperature Forcing of AMOC 5 year forcing; year 5 response

force 0-100m

Optimal Excitation of AMOC by Currents in the North Atlantic

SV1 35x

- FDT can be used to systematically study ocean response
- The leading patterns of AMOC variability do not depend on the existence of special atmospheric structures
- The effect of a given atmospheric pattern on AMOC depends strongly on details of its structure and of ocean dynamics
- The surface fields associated with AMOC anomalies depend on the atmospheric forcing

Comparing NAO Fluxes & Optimal Forcing 5 year forcing; year 5 response

- FDT can be used to systematically study ocean response
- The leading patterns of AMOC variability do not depend on the existence of special atmospheric structures
- The effect of a given atmospheric pattern on AMOC depends strongly on details of its structure and of ocean dynamics
- The surface fields associated with AMOC anomalies depend on the atmospheric forcing

Year 5 Response of AMOC PC1 to Point Sources

force 0-100m

20

16

12

8

4

0

-4

-8

-12

-16

-20

-24

×10⁻²

20°E

forcing = 0.1PSU/mon

Year 5 SST Response to Optimal AMOC Excitation by SHF, Salt & Wind stress

force the salinity force by heat force the currents

- FDT can be used to systematically study ocean response
- The leading patterns of AMOC variability do not depend on the existence of special atmospheric structures
- The effect of a given atmospheric pattern on AMOC depends strongly on details of its structure and of ocean dynamics
- The surface fields associated with AMOC anomalies depend on the atmospheric forcing

- FDT can be used to systematically study ocean response
- The leading patterns of AMOC variability do not depend on the existence of special atmospheric structures
- The effect of a given atmospheric pattern on AMOC depends strongly on details of its structure and of ocean dynamics
- The surface fields associated with AMOC anomalies depend on the atmospheric forcing

note SV2 for this case is like SV1 in other cases

Std dev of Annual Mean Surface Forcing Fields

Green's function of AMOC EOF1 for wind stress

force 0-100m

-300

-500

