The Relationship Between the ITCZ and the Southern Hemispheric Eddy-Driven Jet

Paulo Ceppi, Yen-Ting Hwang, Xiaojuan Liu, Dargan M. W. Frierson, Dennis L. Hartmann

University of Washington Department of Atmospheric Sciences

ITCZ and midlatitude jet shifts

Anderson et al. 2009, Toggweiler 2009, Science

ITCZ and midlatitude jet shifts

Anderson et al. 2009, Toggweiler 2009, Science

ITCZ and midlatitude jet shifts

Anderson et al. 2009, Toggweiler 2009, Science

ITCZ shift (see e.g. Broccoli et al., 2006; Kang et al., 2008)

eddy-driven jet shift in the opposite hemisphere

NH warming

- → northward ITCZ shift
- → strengthening of SH Hadley cell

NH cooling → southward ITCZ shift → weakening of SH HC

strengthening of SH
Hadley cell
→ equatorward jet shift

weakening of SH HC \rightarrow poleward jet shift

strengthening of SH
Hadley cell
→ equatorward jet shift

weakening of SH HC \rightarrow poleward jet shift

what is the role of the change in **subtropical jet strength**?

Barotropic model experiments

simulations with a **prescribed subtropical jet** of varying strength at **25° latitude**

Barotropic model experiments

simulations with a prescribed subtropical jet of varying strength at 25° latitude add eddy stirring at

add **eddy stirring** a⁻ 50° latitude

Barotropic model experiments

simulations with a prescribed subtropical jet of varying strength at 25° latitude add eddy stirring at

50° latitude

Phase speed spectra

eddy momentum flux power spectra

Phase speed spectra

- eddy momentum flux power spectra
- Subtropical jet strengthening
- → waves propagate deeper into tropics
- → eddy momentum flux divergence and convergence shift equatorward (especially for faster waves)

Full-geography ECHAM4.6 runs

shading: June-July-August surface zonal wind climatology

Full-geography ECHAM4.6 runs

shading: June-July-August surface zonal wind climatology contours: JJA response to 100 W m⁻² cooling in NH ocean basins

Full-geography ECHAM4.6 runs

poleward shift of the surface (eddy-driven) westerlies

+ weakening of the subtropical easterlies

CCSM3 30-member ensemble

ITCZ and SH jet shift, 2043-2062 minus 1980-1999

CCSM3 30-member ensemble

correlations between ITCZ shifts and jet shifts

CMIP5 RCP8.5 simulations

21st-century decadal trends in ITCZ and SH jet latitude

CMIP5 RCP8.5 simulations

correlations between ITCZ shifts and SH jet shifts

Conclusions

- Midlatitude jet can respond to a forcing from the extratropics of opposite hemisphere
 - → "interhemispheric teleconnection" via changes in Hadley circulation and subtropical jet strength
- ITCZ and jet tend to shift in **same direction**
- Possible implications for paleoclimates and future climate change

Reference:

Ceppi, P., Y.-T. Hwang, X. Liu, D. M. W. Frierson, and D. L. Hartmann (2013). **The Relationship Between the ITCZ and the Southern Hemispheric Eddy-Driven Jet**, *J. Geophys. Res.-Atmospheres*.

Hemispheric mean temperatures

Momentum fluxes

Jet latitude vs subtropical jet strength

Phase speed spectra (aquaplanet)

weak subtropical jet

strong subtropical jet

same process occurs in aquaplanet experiments

