Understanding Spread in CMIP5: Sensitivity of North Atlantic Storm Tracks to Projected Surface Temperature (T_S) Changes Laura Ciasto (UiB), Camille Li (UiB), Justin Wettstein (OSU/UiB), Nils Gunnar Kvamstø (UiB)

<u>Outline</u>

- Identify spread in projected CMIP5 storm track changes
- Diagnose role of T_s projections using AGCM experiments
- Examine which aspects (if any) of T_s projections matter (local vs remote)?

Future Projections of CMIP5 Storm Tracks

21st Century Projections in High Frequency Storm Track Metrics

- <u>Upper levels</u>: slight poleward intensification; some spread but also some consistency
- Lower levels: ensemble mean shows eastward extension but considerable spread

Blue Line: CMIP3 Ensemble Mean Red Line: CMIP5 Ensemble Mean

Ensemble Mean

Red/blue: projection Black: Historical

Sources of spread?

Storm track spread-AMOC/T_s connection?

- uncertainties in North Atlantic storm track response would be reduced through tighter constraints on MOC behaviour (Woollings et al 2012)
- Evidence for AMOC \rightarrow atmos (via T_s)
- How much of relationship is determined by AMOC/T_s→ atmos (or vice versa)?

Key Questions and Methods

<u>Main Question</u>: To what extent is the spread in the projected North Atlantic storm track changes driven by spread in the projected Ts changes?

- Do the storm tracks care about T_s changes?
- Do the storm tracks care about the intermodel differences in T_s changes?

Main Approach: Use CMIP5 and AGCM

Use a subset of models to focus on sources of spread

Subset of CMIP5: CESM Family

CAM4

CAM5

Atmospheric Component

Ocean

Norwegian Earth System Model (NorESM)

NorESM1-M

and sea ice components are the same between the two model systems.

- 1. Comparison of CMIP5 storm track projected changes
- 2. AGCM forced with North Atlantic T_s projected changes (TsNATL)
- 3. AGCM forced with global T_s /SIC projections (TsGLOB)

Storm track metrics (Dec-Feb): PSL'², Z'²₅₀₀, v'T'₇₅₀, v'v'₂₀₀, (all 2-6 day bandpass-filtered) and u_{200}

1. CMIP5 Comparison

21st century projected change definition: Difference in climatologies between 1980-1999 (Hist) and 2080-2099 (RCP8.5)

CESM1-CAM5 still to be updated

12

20

VorESM1-M CESM1-

-24

-16

- Spread not enormous but large enough
- How sensitive are these projected changes to Ts and their intermodel differences?

^{28 m²s²} Contours: historical climatology Shading:21st century projected change

2. AGCM forced with North Atlantic Ts Projections (TsNATL)

-4.5

0.75

-1.5

2.25

3.75

5.25 K

- AGCM: CAM4 and <u>CAM5</u>
- 30 member ensemble
- Forcing: seasonal cycle of global T_s/SIC
 - 1. <u>Control</u>: entirely from HadISST
 - 2. <u>Perturbation</u>: Control + North Atlantic T_s projected changes from CCSM4, CESM1-CAM5 and NorESM1-M
 - GHG are kept at 1990 values

2. TsNATL Response (vv₂₀₀)

- Response: Perturbation-Control
- Much weaker response than CMIP5 projections
- Little evidence of eastward extension

Contours: Control Shading: Response

-24

-16

-8

12

20

28 m²s⁻²

2. TsNATL Response (U₂₀₀)

*U*₂₀₀

- Weaker but broader jetrelated to NA SST gradient changes?
- Not similar to CMIP5
 projections
- Why don't AGCM experiments capture projected changes in CMIP5
 - lack of coupling
 - other boundary features

3. AGCM forced with Global Ts/SIC Projections (TsGLOB)

Difference in T_s (RCP8.5-Hist)

ESM1-CAM5

60°N

30°N

0°

30°S

- AGCM: CAM4 and <u>CAM5</u>
- 30 member ensemble
- Forcing: seasonal cycle of global T_s/SIC from CMIP climatologies:
 - 1. Historical (1980-1999)
 - 2. RCP8.5 (2080-2099)

90°W

90°F

Forcings created based on output each of the 3 CMIP models

 GHGs averaged over Historical and: ଲିକ୍ଟୋଡି: କ୍ଟିକ୍ଟୋods

3. TsGLOB Response (vv200)

-24

-16

12

20

28 m²s⁻²

 $\overline{\mathcal{V}'\mathcal{V}'}_{200}$

- Response: RCP8.5-Historical
- ALL: general northward/eastward projection
 - Similar to CMIP5 projections
- Similar degree of spread: Storm track response generally weaker when forced by NorESM1-M
 Contours: Historical – RCP8.5

3. TsGLOB Response (U₂₀₀)

TsGLOB

CMIP5

Response to global Ts/SIC captures much of the CMIP5 projected changes? Why?

What about TsGLOB influences changes in upper level N. Atlantic storm tracks?

- North Atlantic Ts
- Arctic Sea Ice Concentrations
- GHG concentrations
- Remote T_s(i.e., tropical Pacific)
 - Increasing evidence of role of tropical Pacific on Arctic climate (Ding et al 2014)
 - uncertainty in Tropical Pacific SST projections influence uncertainty in upper level wind projections (Delcambre et al 2013)

EO

Role of Cold Tongue Ts?

N. Atlantic TsGLOB upper level circulation not strongly related to Ts variability in eastern tropical Pacific.

Role of Warm Pool Ts

RCP8.5 Regression

TsGLOB

North Atlantic upper level circulation linked to Ts variability in tropical Pacific but....

CCSM4 CESM1-CAM5 **NorESM1-M**

Does intermodal spread in tropical Pacific Ts drive intermodel spread in N Atlantic?

21st century Ts change (DJF)

Grey contour: 27.5C Ts (Historical climatology) White contour: 27.5C Ts (RCP8.5 climatology)

- Strength of projected changes in tropical
 Pacific Ts linearly related to strength of changes in North Atlantic storm tracks
 - Strongest changes in CCSM4/CESM1-CAM5 Ts->strongest storm track changes
 - Weakest changes in NorESM1-M Ts→ weakest storm track changes
- Rather handwavy: Need to understand how changing Ts influences North Atlantic

1st Attempt: Changes in Ts→ Changes in OLR

21st century Ts change (DJF)

Grey contour: 27.5C Ts (Historical climatology) White contour: 27.5C Ts (RCP8.5 climatology)

21st century OLR change (DJF) TsGLOB

Grey contour: OLR climatology (Historical)

-2.25 -1.5

Projected changes in OLR are consistent with Ts \rightarrow change source region of Rossby waves?

Κ

Conclusions

- Do the upper level storm tracks care about T_s changes?
 - Yes... but not necessarily to NA $\rm T_s$
 - upper storm track activity dominated some aspect of the global Ts/SIC forcing (Warm Pool T_s?);
- Do the upper level storm track changes care about intermodel differences T_s changes? I think so...
 - CESM1-CAM5: strongest warm pool $T_s \rightarrow$ strongest responses
 - NorESM-1M: weak warm pool \rightarrow weaker responses
 - Still requires physical link
- Caveats: Is it really all about Ts?→ NO
 - Differences in model design (TsGLOB and TsNATL) allow for other factors (GHG concentrations, Artic Sea Ice)
 - Other sources of uncertainty in CMIP5 (mode variability, natural variability

Take Home Message

- Despite all the potential sources, Ts changes do have some impact on the North Atlantic storm tracks
- Do these conclusions also apply to the relationships between spread in low-level storm tracks and Ts projections? No
- How storm tracks are defined influences the sources
 of projected model spread