The Northern Hemisphere winter stationary wave response to global warming in CMIP5

Isla Simpson Richard Seager, Mingfang Ting

Lamont-Doherty Earth Observatory, Columbia University

ERA-Interim DJF climatology

see e.g. Held et al (2002)

Will the stationary waves change? How?

topography

Transient vorticity flux convergence (200hPa)

Shading=vertically integrated diabatic heating

Previous Studies

Single Model Studies

Stephenson and Held (1993), GFDL Joseph et al (2004), GFDL Wang and Kushner (2011), CMAM Selten et al (2004), Branstator and Selten (2009) CCSM1.4

CMIP-3

Brandefelt and Körnich (2008)

Haarsma and Selten (2012)

Previous Studies

Single Model Studies

Stephenson and Held (1993), GFDL Joseph et al (2004), GFDL Wang and Kushner (2011), CMAM Selten et al (2004), Branstator and Selten (2009) CCSM1.4

CMIP-3

Brandefelt and Körnich (2008)

Haarsma and Selten (2012)

Altered tropically forced waves Altered zonal mean basic state

CMIP-5 data

 35 models, all available ensemble members PAST: 1979-2005 of the historical run
FUTURE: 2070-2099 of the RCP8.5 scenario

DJF season

Compare with variability in 200y of piControl

300hPa V, (2070-2099)-(1979-2005)

Important Contribution of these low level, large scale circulation anomalies to future changes in Precipitation-Evaporation over North America and the Mediterranean (Seager et al (2014 a,b))

Should we expect the real world to behave this way?

Does the multi-model mean represent a strong consensus response among the models?

Is it a signal that can be seen to emerge outside of the natural variability in a single realization?

Can we understand it and does it depend on something that we have confidence in our abilities to model?

See also Seager et al (2014)

P-E Past

P-E, Strongest -Weakest

Should we expect the real world to behave this way?

Does the multi-model mean represent a strong consensus response among the models?

Yes, but with spread in the magnitude

Is it a signal that can be seen to emerge outside of the natural variability in a single realization?

Can we understand it and does it depend on something that we have confidence in our abilities to model?

The South West 21 year running means, 1 member

Does the *v* anomaly become larger than the 5-95% confidence interval of the distribution of variability in 21 years means in the piControl ?

The South West 21 year running means, 1 member Yes, in 22/35 models

The South West 21 year running means, 1 member Yes, in 22/35 models —— CCSM4 —— CESM1-CAM5

—— CESM1-WACCM

The NCAR models over North America

(2070-2099)-(1979-2005), ensemble mean

Multi-model mean

CCSM4

CESM1-CAM5

The South West 21 year running means, 1 member Yes, in 22/35 models —— CCSM4 —— CESM1-CAM5

— CESM1-WACCM

Should we expect the real world to behave this way?

Does the multi-model mean represent a strong consensus response among the models?

Yes, but with spread in the magnitude

Is it a signal that can be seen to emerge outside of the natural variability in a single realization?

Yes, in a large number of the models

Can we understand it and does it depend on something that we have confidence in our abilities to model?

Stationary wave modelling

- Stationary wave model described in detail in Ting and Yu (1998)
- Solving the non-linear primitive equations for the anomalies from a prescribed basic state in the presence of zonally asymmetric forcings
- R30L24, σ coordinate
- No Physics, Idealized dampings
- Time integration to 80 days. Quasi-steady state after about day 20. Average days 30-80.

ERA-Interim DJF climatology

see e.g. Held et al (2002)

Can we reproduce the Future-Past difference with the stationary wave model?

Multi-model mean forcings/basic state calculated from all available models

Can we reproduce the Future-Past difference with the stationary wave model?

 $v_P = F(\overline{BS}_P + Q_P + O + TR_P)$ $v_F = F(\overline{BS}_F + Q_F + O + TR_F)$ $\Delta v = v_F - v_P$

CMIP5 multi-model mean

CMIP5, 300hPa V, Future-Past

CMIP5, 700hPa V, Future-Past

CMIP5 multi-model mean

CMIP5, 300hPa V, Future-Past

CMIP5, 700hPa V, Future-Past

Stationary wave model

SW model, 300hPa V, Future-Past

SW model, 700hPa V, Future-Past

Decomposing the response into 4 contributions:

Basic State Influence:

 $\Delta v_{BS} = F(\overline{BS}_F + Q_P + O + TR_P) - F(\overline{BS}_P + Q_P + O + TR_P)$

Diabatic Heating Influence:

$$\Delta v_Q = F(\overline{BS}_P + Q_F + O + TR_P) - F(\overline{BS}_P + Q_P + O + TR_P)$$

Transient Momentum Forcing Influence:

 $\Delta v_{TR} = F(\overline{BS}_P + Q_P + O + TR_F) - F(\overline{BS}_P + Q_P + O + TR_P)$

Residual:

$$\Delta v_{RES} = \Delta v - (\Delta v_{BS} + \Delta v_Q + \Delta v_{TR})$$

All forcings, ΔV

All forcings, ΔV

All forcings, ΔV Basic State, ΔV_{BS}

Diabatic heating, ΔV_Q

All forcings, ΔV

Thermal Wind Balanced State

Thermal Wind Balanced State

No Arctic Amplification

Thermal Wind Balanced State

No Arctic Amplification or polar stratospheric cooling

Thermal Wind Balanced State

No Arctic Amplification or polar stratospheric cooling or tropospheric wind anomalies below σ =0.5

How does the basic state have this influence?

V, Past, All k

Lengthening of the scale of high wavenumber, meridionally trapped, zonally propagating stationary waves

Lengthening of the scale of high wavenumber, meridionally trapped, zonally propagating stationary waves

Linear barotropic stationary wave theory

The atmosphere can only support stationary waves with $K < K_S$

$$(K = \sqrt{k^2 + l^2})$$

$$K_S = \sqrt{\frac{\beta - \bar{u}_{yy}}{\bar{u}}}$$

Group Velocities: $c_x = \frac{2\overline{u}k^2}{(k^2 + l^2)}$ $c_y = \frac{2\overline{u}kl}{(k^2 + l^2)}$

If these intermediate scale stationary waves exist in the real atmosphere.....

and we have an acceleration of the sub-tropical upper tropospheric zonal winds in the future, then it seems likely that this stationary wave response will occur, to some degree.

Other aspects of NH winter stationary wave changes

Conclusions

- The CMIP-5 models exhibit future changes in the mid-latitude meridional wind, with a strong consensus.
- These circulation changes have a substantial influence on the future hydroclimate of North America and the Mediterranean
- Stationary wave modelling suggests that this response is primarily induced by the acceleration of the sub-tropical upper tropospheric zonal wind in association with a warming of the tropical upper troposphere.
- The acceleration of the zonal wind lengthens the dominant scale if the intermediate wavenumber meridionally trapped, zonally propagating waves in the mid-latitudes.
- We need to understand the spread in the magnitude of this response among the models.

Extra Slides

Comparison with ERA-Interim

ERA-Interim (1996-2012)-(1979-1995) differences

~

K>=4 difference in 300hPa V for models with a large response over North America

K>=4 difference in 300hPa V for models with a large response over North America

k>=5

Comparing with piControl

Assessing significance for an individual member

Diabatic Heating

1

DJF, Future-Past

JJA, Future-Past

DJF consensus

Diabatic Heating, Forcing or Feedback?

Other Idealized basic states

No Arctic Amplification or polar stratospheric cooling or tropospheric wind anomalies below σ =0.5

Only change the zonal wind speed, no altered structure

No Arctic Amplification or polar stratospheric cooling or tropospheric wind anomalies below σ =0.5

Remove the change in tropical upper tropospheric stability

Idealized Vorticity Source

Idealized vorticity source.

V, Future-Past, thermal wind

/home/isla/IDL/programs/swpaper/spectral/klksdecomp/kdecomp/idealvort

Idealized vorticity source.

/home/isla/IDL/programs/swpaper/spectrar/kiksuecomp/kuecomp/luearvort

~/IDL/programs/swpaper/spectral/klksdecomp/kdecomp/idealvort/plotbs.pro

~/IDL/programs/swpaper/spectral/klksdecomp/kdecomp/idealvort/plotkdecomp.pro

V, Future-Past, structure

Diabatic Heating

Zonally Asymmetric Diabatic Heating

Diabatic heating, ΔV_Q

Influence of local Q

Wavenumber Decomposition

SW model, wavenumber decomposition

SW model

Past, ks=0-29

Past, ks=0-3

Past, ks=4-29

Past, ks=0-3

Past, ks=4-29

SW model

Putting only k ge 4 forcings in k lt 4 BS

Past, ks=4-29

Putting only k ge 4 forcings in k lt 4 BS

Past, ks=4-29

Future-Past, ks=4-29 B.

With non-linear forcings

Idealized Vorticity Source

Idealized vorticity source.

V, Future-Past, thermal wind

~/IDL/programs/swpaper/spectral/klksdecomp/kdecomp/idealvort/plotkdecomp.pro

V, Future-Past, structure

SW model, 300hPa U, Future-Past

SW model, 700hPa U, Future-Past

