Is Western Europe warming much faster than expected ?

L. Terray and C. Deser

CERFACS & NCAR/CGD/CAS.

Motivation

Western Europe is warming much faster than expected

G. J. van Oldenborgh¹, S. Drijfhout¹, A. van Ulden¹, R. Haarsma¹, A. Sterl¹, C. Severijns¹, W. Hazeleger¹, and H. Dijkstra²

¹KNMI (Koninklijk Nederlands Meteorologisch Instituut), De Bilt, The Netherlands
²Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands

- > 2m-temperature (SAT) trends 1950 2007
- Compare Observations with CMIP3

Motivation

Western Europe is warming much faster than expected

G. J. van Oldenborgh¹, S. Drijfhout¹, A. van Ulden¹, R. Haarsma¹, A. Sterl¹, C. Severijns¹, W. Hazeleger¹, and H. Dijkstra²

¹KNMI (Koninklijk Nederlands Meteorologisch Instituut), De Bilt, The Netherlands ²Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands

- > 2m-temperature (SAT) trends 1950 2007
- Compare Observations with CMIP3
- Discrepancy between models and observations
- Model and forcing biases rather than internal variability

Outline

Observations

- □ A climate variability paradigm for attribution
- A simple approach to estimate variability related to a change in atmospheric circulation
- □ Use the CESM1 large ensemble (Kay, Deser et al. 2015) to estimate the possible influence of internal variability on past temperature trends over Europe

Summary

Observed temperature time series

Observed temperature trends: 1963-2012

DJF

1.5

2 3

-2 -1.5 -1 -0.5 0 0.5 1

-3

JJA

Climate variability paradigm

4 components of variability

Forced	Free					
Thermodynamical	Dynamical					

Dynamical / thermodynamical SAT components

- Dynamical component : due to a change in atmospheric circulation
- The thermodynamical component is simply defined as the residual (Total Dynamical)
- > Intrinsically linked to a certain extent
- > How to estimate the dynamical component ?

Get the dynamical component using analogues

World with constant external forcing
 CESM1 2000-years PiCntrl simulation

- Use large-scale circulation analogues
- SLP monthly means

January SLP Year 576

Dynamical component using analogues

January SLP Year 576

Step 1: Select N closest analogues among all Jan.

Dynamical component using analogues

January SLP Year 576

Step 2: Randomly draw M out of N

Step 3: Find best linear fit coefficients

January SLP Year 576

 $\cong a_1$

-16 -14 -12 -10 -8 -6 -4 -2 0 1 2 3 4 5 6

Step 4: SAT linear combination using the a_i

Step 5: Iterate steps 2,3,4

 $K = 1, \dots, N_{iter} (=15)$

°C

Step 5: Iterate steps 2,3,4

$$K = 1, \dots, N_{iter} (=15)$$

K = 1

°C

SAT dynamical component

6

5

4 3

2

1 0

-1 -2

-3

-4

-5

-6

Total anomaly

Dynamical component

SAT thermodynamical component

6

5

3

2

0

-2

-3

-4

-5

-6

Thermodynamical component

Model framework: use the CESM1 large ensemble (30 members, HISTorical 1920-2012)

- \Rightarrow **1.** Focus on the 1963-2012 period
- \Rightarrow **2.** Focus on winter season (DJF)
- \Rightarrow **3.** Reconstruct HIST monthly SLP from PiCntrl closest analogues
- \Rightarrow **4.** Derive monthly SAT dynamical component for all months of all HIST members
- \Rightarrow **5.** Use paradigm to partition 50-yr trends

Winter SAT 1963-2012 trends

CESM1 Ens.Mean

1.2 °C / 50 years

1.8 °C / 50 years

Obs

All CESM1 trends

All CESM1 trends

Total trends

Member 7

Member 12

0 °C / 50 years

2.5 °C / 50 years

Dynamical component

Member 7

Member 12

-4 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 4

-0.56 °C / 50 years

1.1 °C / 50 years

Thermodynamical component

Member 7

Member 12

-4 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 4

0.56 °C / 50 years

1.4 °C / 50 years

Member 12: free and forced components

^{-4 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 4}

Dynamical and thermodynamical free components

Dynamical

Thermodynamical

0.9 °C / 50 years

0.4 °C / 50 years

EOFs of the trends thermodynamical component

0

0

%

Dynamical adjustment and time of emergence

Total SAT

Dynamically-adjusted

Observations: trend attribution

Summary

- \Rightarrow Western Europe is warming (1.8 K / 50 years in winter)
- ⇒ Analysis of CESM1 LE suggests a possible large contribution from internal variability (same magnitude as the forced response)
- \Rightarrow Main contribution comes from the dynamical component
- ⇒ Dynamical adjustment increases signal to noise ratio (more in winter than summer) and advances time of emergence
- ⇒ Spread in internal thermodynamical component related to the ocean state and land-atmosphere interactions (snow effect dominant in winter)
- \Rightarrow No discrepancy between CESM1 and observations
- ⇒ Dynamically adjusting observations suggests that half of the observed trend could be due to unpredictable decadal changes in atmospheric circulation

Thermodynamical component: ocean

Thermodynamical component: snow

Trend attribution: member 12

-4	-3	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	3	4	

Trend attribution: member 7

Reliability in space

Period 1950-2007: Observations SAT (GISS) \Rightarrow Use SAT regression on global mean temperature SAT(x,y,t) = B(x,y) . SAT_{glob.mean} + ϵ (x,y,t) \Rightarrow Percentile of observed B in model CMIP3 values

Reliability: CMIP5

Period 1950-2007: Observations SAT (GISS) \Rightarrow Use SAT regression on global mean temperature SAT(x,y,t) = B(x,y) . SAT_{glob.mean} + ϵ (x,y,t) \Rightarrow Percentile of observed B in CMIP5

Algorithm

- Use monthly data
- Use a large regional domain (e.g North America), m grid points
- Algorithm
- => Start with SLP of Jan. 1920 of the first HIST member and look for the N_a closest SLP analogues among all (1200) PICNTRL January
- \Rightarrow Even a 1200-year period is not enough to get good enough analogues.
- ⇒ Use the Constructed Flow Analogue (CFA) method (Van den Dool 1994)
- \Rightarrow Draw randomly $\rm N_b$ analogs among the $\rm N_a$
- ⇒ Let X_h be the Jan. 1920 monthly SLP from HIST, $X_{c,i=1,Nb}$ the N_b analogues from PICNTRL. We estimate β such as : $X_h \approx X_{ca} = X_c$. β
- \Rightarrow X_{ca} constructed analogue as a linear combination of the N_b closest analogues (dims of X_c : m x N_b , X_{ca} : m x 1 and β : N_b x 1)
- \Rightarrow Estimate β as [($X_c^T \cdot X_c^{-1} \cdot X_c^{-1} \cdot X_c^{-1}] \cdot X_h$ (Moore-Penrose pseudo_inv)
- \Rightarrow Reconstruct any other monthly variable (SAT, PR) using β
- \Rightarrow Repeat previous steps N_i times
- \Rightarrow Do that for all months and all members from HIST

Europe DJF temperature: member 12

Sensitivity to number of analogues

