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• What determines the range of trends indicated by 
the large ensemble? 

• Can the range in climate trends be accurately 
estimated from a control simulation? 

• Can the range in the trends be accurately estimated 
from observations?



An analytic expression for the margins of error in 
a Gaussian process.

Consider a time series x(t) with mean zero and linear 
least-squares trend b.  

The confidence interval on the trend in x(t) can be 
expressed as:

3 

same external forcing, but are initiated with slightly different atmospheric initial 

conditions. For example, in 2012, the National Center for Atmospheric Research 

(NCAR) released a 40-member ensemble of climate change simulations run using the 

same coupled atmosphere-ocean-sea ice-land model (the NCAR Community Climate 

System Model 3; CCSM3) and forced with the same external forcing (the SRES A1B 

Scenario) from 2000-2060 1, 15. Since the model and forcing are the same in all ensemble 

members, the differences in climate trends from one ensemble member to the next 

derive entirely from the unforced (i.e., internal) variability in the model. Analyses of the 

spread in the trends in the NCAR 40-member ensemble make clear the pronounced role 

of internal climate variability in projections of regional climate change1, 4.  

 Here we develop an alternative approach for estimating the role of internal 

variability in future climate change based on a simple analytic model and the statistics 

of the unforced climate variability. The model is tested in a large-ensemble of climate 

change simulations, and is applied to the statistics of the observed climate. It is argued 

that the signature of internal variability in future climate change can be simply and 

robustly estimated from observations. 

 

A simple analytic model for the role of internal variability in future 

climate change 

 Consider a time series x(t) with mean zero and a linear least-squares trend b. The 

confidence interval (CI) on the trend in x(t) is expressed as: 

 

 CI = b ± e  

 Where e is the margin of error on the trend.



If the distribution of the deviations in x(t) about its 
linear trend is Gaussian, then the margin of error on 
the trend in x(t) is: 

4 

where e is the margin of error on the trend. The trend, its confidence interval and its 

margin or error are all expressed in unitsΔx / ntΔt( ) , where nt  is the number of time 

steps and Δt  is the time step. For example, if x(t) corresponds to 50 years of wintertime 

mean temperature data, then nt = 50 , Δt = 1 year , and the temperature trend in x(t) is 

expressed in units degrees Celsius/50 years. 

 If the distribution of the deviations in x(t) about its linear trend (i.e., the residuals 

of the regression) is Gaussian, then the margin of error on the trend in x(t) is: 

 

1) e = tcsb  

 

where tc  is the t-statistic corresponding to the desired confidence interval and  

 

2)  sb =
ntse

(i − i )2

i=1

nt

∑
 

 

is the standard error of the trend. In Eq. 2, i denotes time, se  is the standard error of x(t) 

about its linear trend, and the factor nt  is included so that the standard error is given in 

units Δx / ntΔt( ) . Equations 1 and 2 are widely used to assess the significance of a trend 

in climate science16, 17, 18.  

 Regarding the standard deviation of the time axis: The denominator in Eq. 2 can 

be expanded as: 

 

standard error of the trend.desired confidence  
level
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2. A simple analytic model of the role of internal variability in future 1 

climate trends 2 

 Consider a time series x(t) with mean zero and a linear least-squares trend b. The 3 

confidence interval (CI) on the trend in x(t) is expressed as: 4 

 5 
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After some algebra…
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introduced by persistence in the time series16, 17, 18, 19. In the case of a red-noise process, 

the standard error se can be expressed in terms of the lag-one autocorrelation as: 

 

6) se =σγ (nt ,r1)  

 

where  

 

7)  γ (nt ,r1) ≡
nt − 2[ ]
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is the scaling factor and r1  is the lag-one autocorrelation of the detrended x(t) time 

series (see Methods and refs. 16, 17, 18, 19) 

  Substituting Eqs. 2, 3, and 6 into Eq. 1 yields the following expression for the 

margin of error on a trend in x(t) in units Δx / ntΔt( ) : 

 

8) e = tc ⋅nt ⋅σ ⋅γ (nt ,r1) ⋅g(nt )   

 

 Equation 8 provides a simple analytic model for the margin of error on a trend in 

a Gaussian red-noise process. It also makes clear that the margin of error is a function of 

three statistics:  

 1) the standard deviation of the internal (unforced) variability, σ ;  

 2) the lag-one autocorrelation of the internal (unforced) variability, r1 ; and 

standard deviation  
of the residualslength of the record 

scaling factor  
to account for  
autocorrelation

arises from variance  
of the time axis
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 1 

Thus, the contribution of the time axis to Eq. 2 can be written as: 
2 

 3 

3) g(nt ) ≡
1

(i − i )2
i=1

nt

∑
= 12

nt
3 − nt

 4 

 5 

Note that the units on g(nt )  are 1/ Δt . 6 

 Regarding the standard error of x(t) about its linear trend ( se  in Eq. 2): If the 7 

residuals (the values of x(t) about its linear trend) are not serially correlated (e.g., the 8 

lag-one autocorrelation of the detrended x(t) time series is zero), then se  is equal to the 9 

standard deviation of the detrended x(t) time series: 10 

 11 

4) se =σ  12 

 13 

where 14 

 15 

5) σ ≡ 1
nt − 2

x(i)− bi[ ]2
i=1

nt

∑  . 16 

 17 

In the context of climate change, σ  corresponds to the standard deviation of the 18 

internal (unforced) variability.  19 

 If the detrended x(t) time series is serially correlated, then se  must include a 20 

scaling factor that accounts for the bias in the sample standard deviation introduced by 21 
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The margin of error on a trend in a Gaussian 
process is a function of three statistics:!
!

1) the standard deviation of the internal 
(unforced) variability. 

2) the lag-one autocorrelation of the internal 
(unforced) variability.  

3) the number of time steps in the time series. 



If the residuals are serially uncorrelated and the 
trend is 50 time steps, then:!
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where e95%  is in unitsΔx / ntΔt( )  and we have made the following simplifications: 1) 

g(nt ) ~
12
nt
3
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 for nt >~ 20 ; 2) the two-tailed 95% t-statistic is ~2 for nt >~ 20  (if the 

sign of the trend is expected a priori then a one-tailed t-statistic is justified); and 3) 

γ ~1  for r1 ~ 0 .  

 Equation 9 holds for any physical process that is roughly Gaussian and is not 

serially correlated including, for example, seasonal-mean surface temperature and 

precipitation at most terrestrial locations. It makes clear the roughly linear relationship 

between the standard deviation of the internal variability and the margins of error on 

climate trends due to the internal variability.  

 In the case where the trend length is 50 time steps, Eq. 9 further reduces to the 

very simple expression: 

 

10) e95% ~σ  (for  nt = 50 and r1 ~ 0 ) 

 

Hence, for any Gaussian physical process that is not serially correlated from one year to 

the next, the 95% margin of error on the 50 year trends is roughly equal to the 

interannual standard deviation. If the interannual standard deviation is 2 degrees 

Celsius, then the two-tailed 95% confidence interval on the 50 year trends in surface 

temperature is roughly ±2  degrees Celsius/50 yrs. 
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50 year trends in Oct-March surface temperature
From Thompson et al. 2015

… testing the analytic model in the NCAR CCSM3 large 
ensemble
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… testing the analytic model in the NCAR CCSM3 large 
ensemble
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From Thompson et al. 2015

… testing the analytic model in the NCAR CCSM3 large 
ensemble
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… testing the analytic model in the NCAR CCSM3 large 
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… applying the analytic model to observations!
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Predicted uncertainty in Oct-March surface temperature trends
From Thompson et al. 2015

… applying the analytic model to observations!

Observations from CRU
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… applying the analytic model to observations!

Observations from CRU

Control simulation
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From Thompson et al. 2015

… applying the analytic model to observations!

Observations from GPCP

Predicted uncertainty in Oct-March precipitation trends



 

 

mm/day/50 years
0 0.5 1 1.5

 

 

mm/day/50 years
0 0.5 1 1.5

  Precipitation: October-March

            b) “Predicted” 95% margin of error 
(from interannual standard deviation of control run)

             a) “Predicted” 95% margin of error 
(from interannual standard deviation of observations)

… applying the analytic model to observations!

Observations from GPCP

Control simulation

Predicted uncertainty in Oct-March precipitation trends



… applying the analytic model to observations!
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Time of emergence / when is a trend significant?!
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for seasonal-mean data !
and nt>~10:

nt
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• bnt is the ensemble mean trend (the forced 
response) 

• e is the uncertainty predicted by control

Chicago wintertime
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nt denotes the time step when 95% of the ensemble members  
(i.e., realizations of the real world) exceed a trend of 0.
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nt denotes the time step when 95% of the ensemble members  
(i.e., realizations of the real world) exceed a trend of 0.

trends from individual ensemble members
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the “time of emergence” given by an individual ensemble member does not: 
1) correspond to the time step when the forced signal is significant 
2) account for the uncertainty in the trend due to natural variability

Comparison with the time of emergence



!
The analytic model provides a zeroth order 
estimate of the uncertainty in future trends in any 
Gaussian process with stationary variance.!
!
e.g., the atmospheric circulation at middle latitudes, 
precipitation averaged over a specific watershed, 
surface temperature averaged over a broad 
agricultural region, and global-mean temperature.  
!



Large-ensembles provide seemingly little 
information on the role of internal variability in 
future climate that can not be inferred from a 
relatively short, unforced climate simulation. !
!
(Multiple ensembles are required to estimate the 
forced response)!



Arguably… the  role of internal variability in 
future climate change is best estimated not from 
a climate model (which inevitably exhibits 
biases), but from the statistics of the observed 
climate.! !
!
(Decadal variability accounts for a relatively small 
fraction of the standard deviation on regional 
scales).

results drawing from: 
• Thompson et al. (submitted to Journal of Climate) 
see www.atmos.colostate.edu/~davet

http://www.atmos.colostate.edu/~davet

