Estimating the Role of Natural
Variability in Climate Change Using
Observations

David W J Thompson (CSU)
Elizabeth A Barnes (CSU)
Clara Deser (NCAR)
William E. Foust (CSU)
Adam S. Phillips (NCAR)

results drawing from:
 Thompson et al. (submitted to Journal of Climate)
see www.atmos.colostate.edu/~davet



http://www.atmos.colostate.edu/~davet

Time series of near

surface

temperature from Surfape temperature

the NCAR CCSM3 | Ilargest trend
40-member . Los Angeles -

ensemble. ‘

| smallest trenad

Deg C

Berlin

i

2010 2030 2050
Year

Ticks at 1 deg.

See also Deser et al. 2012



Standard deviations of 50-year trends
Surface temperature

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
K/50 years

Range of trends from all 40 ensemble members during
October-March.



 What determines the range of trends indicated by
the large ensemble?

 Can the range in climate trends be accurately
estimated from a control simulation?

e Can the range in the trends be accurately estimated
from observations?



An analytic expression for the margins of error In
a Gaussian process.

Consider a time series x(t) with mean zero and linear
least-squares trend b.

The confidence interval on the trend in x(t) can be
expressed as:

Cl=b=e

Where e is the margin of error on the trend.



f the distribution of the deviations in x(t) about its
inear trend is Gaussian, then the margin of error on
the trend Iin x(t) is:

e=ts,

desired confidence standard error of the trend.
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After some algebra...
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The margin of error on a trend in a Gaussian
process is a function of three statistics:

1) the standard deviation of the internal
(unforced) variability.

2) the lag-one autocorrelation of the internal
(unforced) variabillity.

3) the number of time steps in the time series.



If the residuals are serially uncorrelated and the
trend is 50 time steps, then:

€ys, ~0 (for n, =50 andr, ~0)
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... testing the analytic model in the NCAR CCSMS3 large

ensemble
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... testing the analytic model in the NCAR CCSMS3 large
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... testing the analytic model in the NCAR CCSMS3 large
ensemble
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... testing the analytic model in the NCAR CCSMS3 large
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... applying the analytic model to observations
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... applying the analytic model to observations
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... applying the analytic model to observations
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Time of emergence / when is a trend significant?

temperature

N >

set e=bn; and solve for n;

2/3
for seasonal-mean data , _ 1,13 L9
and nt>~10.' t b



Chicago wintertime

Trend amplitude (K/length record)
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e bn:is the ensemble mean trend (the forced
response)
* ¢ s the uncertainty predicted by control
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2/3
n = 121/3(t66)
t b

n:denotes the time step when 95% of the ensemble members
(i.e., realizations of the real world) exceed a trend of O.




trends from individual ensemble members

Trend amplitude (K/length record)
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n:denotes the time step when 95% of the ensemble members
(i.e., realizations of the real world) exceed a trend of O.




Comparison with the time of emergence

(2 * natural
variability)
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the “time of emergence” given by an individual ensemble member does not:
1) correspond to the time step when the forced signal is significant
2) account for the uncertainty in the trend due to natural variability



The analytic model provides a zeroth order
estimate of the uncertainty in future trends in any
Gaussian process with stationary variance.

e.q., the atmospheric circulation at middle latitudes,
precipitation averaged over a specific watershed,
surface temperature averaged over a broad
agricultural region, and global-mean temperature.



Large-ensembles provide seemingly little
information on the role of internal variability in
future climate that can not be inferred from a
relatively short, unforced climate simulation.

(Multiple ensembles are required to estimate the
forced response)



Arguably... the role of internal variability in
future climate change is best estimated not from
a climate model (which inevitably exhibits

biases), but from the statistics of the observed
climate.

(Decadal variability accounts for a relatively small
fraction of the standard deviation on regional
scales).

results drawing from:

 Thompson et al. (submitted to Journal of Climate)
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