
CESM Workflow Refactor Project
LIMWG and PCWG 2015 Winter Meetings

Alice Bertini Sheri Mickelson
CSEG & ASAP/CISL

CESM Workflow Refactor Project

Who’s involved? Joint project between CSEG, CISL and CCP

Goals? To create a new end to end workflow that enables
scientists to get work done easier and faster

What we’re looking to improve? Input data creation,
archiving, model variable time-series generation, and post-
processing

What is our process? Looking at current workflow
functionality and performance and incrementally adding
improvements that yield the most “bang for the buck”

CESM Workflow Refactor Project

Old Workflow

Analysis Model
Run HPSS

Spinning
Disk

st_archive

Model
Run

Parallel
Diagnostics
pyAverager

Analysis

Parallel Data
Compression
time-series
generation

pyReshaper

New Workflow

HPSS
optional

Uses NCL, Matlib, XML, Python, and CESM scripts

STOP

Serial
Diagnostics

Serial Data
Compression
time-series
generation

CESM Script Modifications
Problems:

• The current CESM framework can not automate the
time-series generation or diagnostic submission

• Existing framework is not flexible and wastes
compute cycles

Solution:
• Automate post-processing tasks submitted as

separate dependent jobs in the model run script
• Allow for the flexibility to submit these jobs with

different node counts
• Refactor the short-term archive script to create a

post-processing location on disk to allow for
concurrent model run and post-processing tasks

Short-Term Archiver

archive.locked
ice
ice/hist
ice/rest
ice/logs

archive
ice
ice/hist
ice/rest
ice/logs
ice/proc
ice/proc/tseries
ice/proc/tavg

What it does:
• At model run completion, copies or moves all files from

the run directory into the archive directories on disk
• Retains a complete set of restart files in the run directory

allowing for a new run job submission
• Controlled by XML
• Follows the CESM output file naming conventions

Problems:
• The current post-processing suite works in serial

using NCO
• CMIP5 post-processing required about as much

wall-clock time to post-process data as actual
model run time

Solution:
• Light-weight parallel Python tool to do conversion

in-line with the CESM run script called pyReshaper
• Works with CESM run environment, short-term

archive and XML (cesm_tseries_generator.py)
• Supports NetCDF3, NetCDF4, and NetCDF4C

Data Compression and Time-Series
Generation

Series 1
Field 1

Slice 1

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 5

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 3
Fi

el
d

1
Fi

el
d

2
Fi

el
d

3
Slice 4

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 2

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Series 2
Field 2

Series 3
Field 3

History Time-Slice to Time-Series
Converter – Serial NCO

Slice 1
Fi

el
d

1
Fi

el
d

2
Fi

el
d

3
Slice 3

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Slice 2

Fi
el

d
1

Fi
el

d
2

Fi
el

d
3

Series 1
Field 1

Series 2
Field 2

Series 3
Field 3

Rank 1

Rank 2

Rank 3

Task Parallelization Strategy

Each rank is responsible for writing one
(or more) time-series variables to a file

pyReshaper

Time-Series Generation Performance

Details from 1deg POP run:
• b.e12.B1850C5CN.ne30_g16.init.ch.027
• 10 years of monthly history data
• TI Metadata Variables: 63
• TV Metadata Variables: 2
• Time-Series Variables: 114
• Variables (TOTAL): 179
pyReshaper operated 4.5 times faster than
NCO serial

Details from 0.1deg POP run:
• v5_rel04_BC5_ne120_t12_pop62
• 10 years of monthly history data
• TI Metadata Variables: 58
• TV Metadata Variables: 2
• Time-Series Variables: 34
• Variables (TOTAL): 94
pyReshaper operated 9 times faster than
NCO serial

Yellowstone - pyReshaper used 4 nodes and 4 cores/node.

Tasks
Completed and available in the
CESM Developer Repository:

• New CESM Short-Term Archiving
capability to local disk
(st_archive) allows model to
continue running concurrently
with post-processing

• A Parallel Time-Series File

Generator and File Compression
(pyReshaper and
cesm_tseries_generator.py)

Currently Working On:
 • Bringing diagnostics and analysis

capabilities into the CESM run
scripts

• Automating the submission of the
diagnostic packages

• Modifying diagnostic packages to
be more extensible, robust, and
scalable. (pyAverager)

• Archiving run metadata to the
experiment database directly
from the case directory for
provenance. (archive_metadata)

Diagnostic Packages

Problems:
• Runs either serially or with limited

parallelization
• Not easily integrated into the CESM run

environment
• Not easily extensible
• Hard to run with big data
• Only works with history time-slice data

Solutions for the Diagnostic Packages
Reworking each package following these steps :

1. Integrate diagnostics into the CESM end-to-end

automated workflow, while still maintaining stand alone
capabilities

2. Diagnostic environment defined in XML
3. Creating climatology files with the PyAverager
4. Task parallelizing existing plotting scripts
5. Works with either time-slice or time-series files

• Brings in the CESM case and diagnostic settings as a
Python data structure

• Calls the parallel pyAverager
• Calls NCL plotting scripts in parallel
• Converts ps plots in parallel
• A directory that contains the html file and plots is

created

Diagnostics Integration

PyAverager Details

A light weight custom Python averaging tool
• Parallelizes over averages and variables
• Works on time slice and time series data

Types of averages it can compute:
• Temporal Averaging

– Seasonal, Yearly, Annual, Monthly (weighted optional)
• Spatial Averaging

– Across spatially split files

Looking to also compute:
• Variance
• Across ensembles

Time Averaging Options
• NCO (serial)

– Controlled by a top level csh script that calls NCO
operators to calculate averages.

• Swift (limited task parallel)

– Averages are calculated in parallel calling the NCO
operators

• PyAverager (task parallel)

– New method written in Python that task parallelizes over
variables and averages.

Each method was operated on both time slice and time
series files

Time Averaging Comparisons
Datasets Used

Component Res

Size
(GB)

of Vars

CAM FV 1 .0 28 139

CAM SE 1.0 30 148

CAM SE 0.25 1055 214

CICE 1.0 8/4 137

CICE 0.1 556/42 132

CLM 1.0 10 310

CLM 0.25 113 163

POP 1.0 190 170

POP 0.1 3113 87

Types of time averages
computed

 CAM & CLM
• Seasonal Averages

– ANN,DJF,MAM,JJA,SON
• Monthly Averages

– One average per month
• 17 Averages Total

POP & CICE
• Yearly Averages

– One average per year
• 10 Averages Total

* All dataset contain 10 years of both monthly time
slice and time series files

Low Resolution Timings
Original method vs. Swift vs. pyAverager

(min) CAM
FV

CAM
SE

CICE CLM POP

NCO 6 7 1 3 14

SWIFT 5 5 0.4 1.2 7

pyAve 4 3 0.2 1.5 3

(min) CAM
FV

CAM
SE

CICE CLM POP

NCO 111 118 51 295 80

SWIFT 53 61 16 90 17

pyAve 2 1 0.1 0.4 3

(min) CICE CAM CLM POP

NCO 27 215 14 306

SWIFT 6 102 7 92

pyAve 1 16 4 21

(min) CICE CAM CLM POP

NCO 88 861 1005 439

SWIFT 16 203 177 109

pyAve 0.2 5 0.7 12

High Resolution Timings
Original method vs. Swift vs. pyAverager

Computational Resources Used For
Timing Comparisons

File Type NCO-Slice NCO-Series Swift-Slice Swift-Series PyAvg-Slice PyAvg-Series

POP-1.0 Y/1 Y/1 G/16 G/16 Y/160 Y/160

CLM-1.0 Y/1 Y/1 G/16 G/16 Y/160 Y/160

CICE-1.0 Y/1 Y/1 G/16 G/16 Y/160 Y/160

CAMSE-1.0 Y/1 Y/1 G/16 G/16 Y/160 Y/160

CAMFV-1.0 Y/1 Y/1 G/16 G/16 Y/160 Y/160

POP-0.1 BM/1 Y/1 BM/4 G/16 G/40 G/40

CLM-0.25 GP/1 Y/1 G/16 G/16 Y/160 Y/160

CICE-0.1 GP/1 Y/1 G/16 G/16 Y/160 Y160

CAM-0.25 GP/1 Y/1 G/16 G/16 Y/160 Y/160

Machine/Cores
Y=Yellowstone G=Geyser GP=GPGPU BM=BigMem

• CESM Users Guide updates

• XML modifications via existing tools

• DiscussCESM bulletin board forums

• Coordination with LIMWG and PCWG

– Diagnostics packages

• Coordination with CISL
– Parallel Python tools

CSEG Support

Continued Work

• Extending the flexibility of the run scripts

• Creating more extensible working environments

• Providing solutions to increase scalability and

automation within the workflow
– Including other CMIP workflow tools

• Adding testing into the current post-process workflow

Questions?
CESM workflow refactor team
• Ben Andre
• Alice Bertini
• John Dennis
• Jim Edwards
• Mary Haley
• Jean-Francois Lamarque
• Michael Levy
• Sheri Mickelson
• Kevin Paul
• Sean Santos
• Jay Shollenberger
• Gary Strand
• Mariana Vertenstein

	CESM Workflow Refactor Project�LIMWG and PCWG 2015 Winter Meetings
	CESM Workflow Refactor Project
	CESM Workflow Refactor Project
	CESM Script Modifications
	Short-Term Archiver
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Tasks
	Diagnostic Packages
	Solutions for the Diagnostic Packages
	Slide Number 13
	PyAverager Details�
	Time Averaging Options
	Time Averaging Comparisons
	Low Resolution Timings �Original method vs. Swift vs. pyAverager
	High Resolution Timings �Original method vs. Swift vs. pyAverager
	Computational Resources Used For Timing Comparisons
	Slide Number 20
	Continued Work
	Questions?

