Using Landscape Typologies to Model Socioecological Systems

Sujith Surendran Nair Ben Preston Anthony King Rui Mei

Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast. Submitted to Environmental Modeling and Software

Regional Production Function

Clustering to create typologies

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Input variables for clustering

Variables	Time Span	Data Source				
Climate	1981-2010	DayMet				
(30 years monthly, growing-season and						
annual mean and standard deviations at						
Soil (Components in man unit key)		STATSGO				
Topography		01/1000				
(Average and standard deviation		NED, USGS				
HUC-12 watersheds)						
Socioeconomic Variables (County)						
Size of farm holding	1982-2007	Agriculture Census, USDA				
Farm production intensity	1986-2010	NASS-USDA and US BEA				
Farm specialization	1986-2010	NASS-USDA and US BEA				
Total factor productivity	1986-2010	InSTePP Database				
Population and population density	1986-2010	US Census Bureau				
Road connectivity	1990-2010	US Census Bureau				
Household income	1986-2010	US Census Bureau,				
		American Community Survey				
Unemployment	1986-2010	US Census Bureau				
Education	1986-2010	US Census Bureau				

Mapped typologies

Typologies

- a. Climate
- b. Soil
- c. Topography
- d. Socioeconomic
- e. Bio-Physical (BPT)
- f. Socio-Ecological (SET)

2,410 unique BPT types 4,429 unique SET types

Regression modeling with types as predictor variables

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Results from BPT and SET models for corn yield

Property	ВРТ	SET					
Adjusted R ²	0.72	0.89					
Share of typologies [†] (%)							
Climate	55	38					
Soil	33	17					
Topography	12	8					
Socioeconomic		37					
Number of types dropped from BPT and new types added to SET							
Climate	6	18					
Soil	4	3					
Topography	3	1					
Socioeconomic		37					
Friedman's Two-way Analysis of Variance [‡]							
Observed Corn Yield	19.92	0.05					
BPT vs. SET	13	.92					
Partial F test ^{†††}	114	4.44					

Results from BPT and SET models for corn yield

		\frown					
Property	BPT	SET					
Adjusted R ²	0.72	0.89					
Share of typologies ⁺ (%)							
Climate	55	38					
Soil	33	17					
Topography	12	8					
Socioeconomic		37					
Number of types dropped f	rom BPT and nev	v types added to SET					
Climate	6	18					
Soil	4	3					
Topography	3	1					
Socioeconomic		37					
Friedman's Two-way Analysis of Variance [‡]							
Observed Corn Yield	19.92	0.05					
BPT vs. SET	1	3.92					
Partial F test ^{†††}	11	4.44					

Including socioeconomic variables explained more of the regional spatial variation in 25-year mean corn yields

Social Vulnerability: loss to climate hazards

Social Vulnerability

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Predicting economic loss from climate hazards (L_E)

So... typologies and CESM

- **1.** Attribution might inform choice of variables for:
 - a. Scenarios of future socioeconomic forcings
 - b. Endogenous variables in CESM >2
- 2. Post processing of CESM projections:
 - a. Typological differences
 - ---- how does a future typology compare with the historic BPT straightforward, but future SET will be constrained by projection of socioeconomic variables
 - b. Use future typology with the historical empirical model to project future values for the target variable
 - c. Evaluate functional responses --- does the relationship between target variable and typology in the future match the historical
- 3. Use types within CESM --- analogous to plant functional types

Relevance to SDWG

- Fostering dialogue
- Needs for CESM development (CESM >2)
 - expanded socioeconomic scenarios
 - endogenous socioeconomic variables
- Relevant CESM simulations (if used in postprocessing/analysis of results):
 - those with projected agricultural yields
 - any with future extreme events/hazards
- New CESM linkage code ?

Regional Production Function

http://www.ied.edu.hk/apfslt/v6_issue2/foreword/foreword4.htm

Selecting the typology (level of clustering)

Level of hierarchy of climate clusters

Regional Production Function

Predicted versus observed corn yield

Significant socioeconomic variables

Significant socioeconomic variables

	Single	Single Variable in Combination with a Second Variable							
Variable	variable	FSp	FInt	TFP	Edu	PopDen	PerIn	RdDen	Total
FSize	1,004	21	38	78	54	41	1	0	1237
FSp	94		0	0	0	0	0	0	94
FInt	62			0	24	0	21	0	107
TFP	750				28	0	53	0	831
Edu	845					0	45	11	901
PDen	169						1	0	170
HIn	590							0	590
Rlength	124								
Total	3,638								3,930

- FSize: Farm Size
- FSp: Farm Specialization
- FInt: Farming Intensity
- TFP: Total Factor Productivity
- Edu: Education
- PDen: Population Density
- HIn: Household Median Income

Rlength: Road Length.

