# Radiative Forcings of Wildfire Aerosols Estimated with CAM5

Yiquan Jiang<sup>1</sup>, <u>Xiaohong Liu<sup>1</sup></u>, Kai Zhang<sup>2</sup>, Zheng Lu<sup>1</sup>, Yun Qian<sup>2</sup> and Yuhang Wang<sup>3</sup>

 <sup>1</sup> Department of Atmospheric Science, University of Wyoming
 <sup>2</sup> Pacific Northwest National Laboratory
 <sup>3</sup> School of Earth and Atmospheric Sciences, Georgia Institute of Technology

## **Outline**

♦ Introduction

Methods, data and experiments

Fire aerosol radiative forcings

## **Outline**

## Introduction

Methods, data and experiments
Fire aerosol radiative forcings

## **Fires Are Increasing World-Wide**

Wildfires in Western US have increased 4-fold in 30 years.

Western US area burned





Source: Westerling et al. 2006

# Fire Aerosol Distribution



#### **Fire BC**



**Fire POM** 

## **Outline**

#### ♦ Introduction

#### Methods, data and experiments

♦ Fire aerosol radiative forcing

# Model and Experiments

- CAM5.3 + MAM4: 0.9 degree × 1.25 degree
- CLM4.0 with SNICAR (SNow, ICe, and Aerosol Radiative Model)
- Fire emissions: GFED 3.1 daily emissions (2003 to 2011)
- Fire injection heights based on the AeroCom (0-6 km)
- Simulation time: 2003 to 2011 with observed SST

# **AMIP-Type Experiments with CAM5.3**

|           | Fire BC | Fire POM | Fire SO2 |
|-----------|---------|----------|----------|
| Fire      | On      | On       | On       |
| NoFire    | Off     | Off      | Off      |
| NoFireBC  | Off     | On       | On       |
| NoFirePOM | On      | Off      | On       |

- Each experiment for 2003-2011, with 10 ensembles
- 0.9x1.25 horizontal resolution, 30 vertical levels
- Anthropogenic aerosol emissions: IPCC AR5 emissions (Lamarque et al., 2010)

## **AMIP-Type Experiments with CESM-CAM5**

#### **BBFFBF**

#### Tag BC/POM in three categories : Fossil Fuel (FF) Biomass Burning (BB) Bio-Fuel (BF)

## **Outline**

Introduction
 Methods, data and experiments
 Fire aerosol radiative forcings

## Method to Calculate Aerosol Radiative Forcing (Ghan 2013)

#### Shortwave



Longwave

#### F: net shortwave flux at TOA

- F\_clearsky = F without cloud
- F\_noaer = F without aerosol
- F\_noaer, clearsky = F without aerosol & cloud

 $\Delta F = Fire - NoFire \quad (All fire aerosol radiative forcing)$  $\Delta F = Fire - NoFireBC \qquad (Fire BC radiative forcing)$  $\Delta F = Fire - NoFirePOM \quad (Fire POM radiative forcing)$ 

$$\Delta F = \Delta(F - F_noaer) + (direct)$$
  
$$\Delta(F_noaer - F_noaer, clearsky) + (cloud)$$
  
$$\Delta F_noaer, clearsky (albedo)$$

- Direct forcing should be estimated in allsky condition
- *Indirect forcing* should be estimated without influence of aerosol direct effect

# **Method to Calculate Aerosol Radiative Forcing**

#### **BBFFBF**:

F – F\_NoFire F – F\_NoFireBC F – F\_NoFirePOM (Fire aerosol direct forcing)(Fire BC direct forcing)(Fire POM direct forcing)

# **Evaluation of Simulated AOD**



# **Evaluation of Simulated SSA**



# Direct forcing of all fire aerosols

Method: Fire - NoFire

Method: BBFFBF



Fire aerosol direct forcing : 0.15 W/m<sup>2</sup>

# Direct forcing of fire BC

#### Method: Fire - NoFireBC

#### Method: BBFFBF



#### Fire BC direct forcing : 0.25 W/m<sup>2</sup>

# Direct forcing of fire POM

#### Method: Fire - NoFirePOM

#### Method: BBFFBF



#### Fire POM direct forcing : 0.04 to -0.05 W/m<sup>2</sup>

## Seasonal variation of direct forcing of all fire aerosols



## Cloud forcing change from all fire aerosols



Fire aerosol indirect forcing : -0.70 W/m<sup>2</sup>

## Cloud forcing change from fire BC and POM

BC

#### POM



Fire BC and POM indirect forcing : -0.04, -0.59 W/m<sup>2</sup>

### Seasonal variation of cloud forcing from all fire aerosols



# Albedo forcing of all fire aerosols



Evaluation of simulated BC concentration (in ng  $g^{-1}$ ) in the top snow layer against observations in the Arctic (Doherty et al 2010) and Northern China (Wang et al 2013b).

# Albedo forcing of all fire aerosols

#### Method: Fire - NoFire

#### Method: SNICAR



Fire aerosol surface albedo forcing : 0.033 W/m<sup>2</sup>

Fire aerosol snow albedo forcing : 0.048 W/m<sup>2</sup>

# Summary

- The annual mean direct radiative forcing of all fire aerosols (+0.15 W m<sup>-2</sup>) is mainly due to fire BC (0.25 W m<sup>-2</sup>), while fire POM induce a weak forcing (-0.05 to 0.04 W m<sup>-2</sup>).
- The global annual mean cloud forcing change (radiative forcing from aerosol-cloud interactions) of all fire aerosol is -0.70 W m<sup>-2</sup> and mainly from indirect forcing of fire POM (-0.58 W m<sup>-2</sup>). The cloud forcing is maximum in the NH high latitudes during boreal summer.
- The global annual mean surface albedo forcing (+0.03 W m<sup>-2</sup>) is mainly due to fire BC snow forcing (0.04 W m<sup>-2</sup>) and the maximum albedo forcing is in spring (0.12 W m<sup>-2</sup>).
- Next step: studying the climate effect of fire aerosols



# **Evaluation of Simulated AAOD**



#### Fire aerosol effects on surface temperature



#### Fire aerosol effects on surface precipitation

