# Effects of Various Vertical Grids in CAM/WACCM

Jadwiga (Yaga) Richter, J. Bacmeister, C. Chen, L. Sun, C. Deser

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## **Motivation**

I. Horizontal resolution of CAM/WACCM has increased, while vertical resolution has not:

**2004**: T42 ~ 300 km CAM3: **26** levels WACCM3: 66 levels

**2014**: 1° ~ 100 km CAM5: **30** levels WACCM5: 70 levels

II. Tropical Kelvin & Rossby-Gravity waves have wavelengths between 2 and 8 km

III. Last 20 years of middle atmospheric research have shown that the stratosphere is important to tropospheric climate

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## In 2013: 60L CAM



• First internally generated QBO in CAM

National Center for Atmospheric Research

Climate & Global Dynamics

NCAR

UCAR

## Wave Spectra:



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics

## 60L Tropical Winds



Richter et al. 2014, JGR

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

#### 60/83/110L Grids



• 83L CAM: 1 50-yr AMIP run

• All SE ne30 runs (~ 1x)

• 110L WACCM: 12 yr AMIP run

# NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## Mean T: 110 vs 70L WACCM



NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

#### QBO

a) Observed U Pressure (hPa) OBS ο. -20 -25 -30 -36 100 E Time (months) b) 83Lcom U 2S to 2N Pressure (hPa) 83L CAM 0 5 -15 -20 -25 -30 -35 Time (months) c) 110L WACCM U 2S to 2N Pressure (hPa) -15 -20 -25 -30 -35 Time (months) 

110L WACCM

Better representation of tropopause

More Kelvin, Mixed-Rossby GW's

An internally generated QBO

#### Raised Model Lid in CAM



- 46L CAM: CAM+WACCM GWs
  - 10 50-yr AMIP ensembles
- WACCM: 50-yr AMIP run

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## 46L Mean Climate



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics

## 46L Variability:



DJF

JJA

#### 46L Model:



NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

### El Nino Response



#### Std. El nino Anomaly



NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## El Nino Response

T 80N



NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## El Nino Response



## Mechanism?

## is the Stratospheric Pathway via SSWs?

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## Non-Disturbed years:

# El Nino Years with No SSW Events:

T80N 30L

T80N 46L



#### El Nino response reaches the surface in Spring even when there are no SSWs suggesting that stratospheric pathway exists with or without SSWs

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

#### However....



Stronger PSL response over NP during winters with SSWs suggesting STRONGER stratospheric pathway when SSWs are present

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

#### SSWs



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics

#### Increased Model Lid

No Changes to mean climate

Increased Stratospheric Variability

An internally generated QBO

Significant Impacts to ENSO response

**Better SSWs** 

QBO



#### Vertical Remapping:



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics

## Vertical Remapping:



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics

## Vertical Grid Choices:

| Model              | Mean Climate                   | Tropospheric<br>Wave<br>Spectrum | QBO       | Vertical<br>Remapping                   | Cost |
|--------------------|--------------------------------|----------------------------------|-----------|-----------------------------------------|------|
| 30L (or 32)<br>CAM | OK                             | Deficient                        | None      | Poor                                    | 1xC  |
| 46L CAM            | OK                             | Deficient                        | OK        | OK                                      | 1.5C |
| 70L WACCM          | OK                             | Deficient                        | OK        | OK at trop Not<br>great at model<br>top | 1W   |
| 60L                | OK +<br>Improved<br>Tropopause | Improved                         | Very Good | OK                                      | 2C   |
| 83L                | OK +<br>Improved<br>Tropopause | Improved                         | Very Good | OK                                      | 3C   |
| 110L WACCM         | OK +<br>Improved<br>Tropopause | Improved                         | Very Good | OK at trop<br>Not great at model<br>top | 1.5W |

NCAR<br/>UCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## Conclusions

 It's time to consider changing the vertical grid structure in CAM and WACCM

• For **CAM**: the inclusion of a better resolved stratosphere would add more realistic variability & get rid of remapping issues

 For WACCM: higher vertical resolution clearly improves the resolved wave spectrum & provides best representation of the QBO

## Vertical Grid Choices:

| Model              | Mean Climate                   | Tropospheric<br>Wave<br>Spectrum | QBO       | Vertical<br>Remapping                  | Cost |
|--------------------|--------------------------------|----------------------------------|-----------|----------------------------------------|------|
| 30L (or 32)<br>CAM | OK                             | Deficient                        | None      | Poor                                   | 1xC  |
| 46L CAM            | OK                             | Deficient                        | OK        | OK                                     | 1.5C |
| 70L WACCM          | OK                             | Deficient                        | OK        | OK at trop Not<br>good at model<br>top | 1W   |
| 60L                | OK +<br>Improved<br>Tropopause | Improved                         | Very Good | OK                                     | 2C   |
| 83L                | OK +<br>Improved<br>Tropopause | Improved                         | Very Good | OK                                     | 3C   |
| 110L WACCM         | OK +<br>Improved<br>Tropopause | Improved                         | Very Good | OK at trop<br>Not good at model<br>top | 1.5W |

NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

#### Cold Pole Problem in WACCM



WACCM 5



NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics

## Vertical Remapping:



NCARNational Center for Atmospheric ResearchUCARClimate & Global Dynamics