Community Earth System Model

Understanding the importance of chemistry representation in CESM1-CAM5

Simone Tilmes, Jean-Francois Lamarque, Louisa Emmons, CAM-chem team

- Radiative impact of different chemistry descriptions
- Improved aerosols formation using hourly input data set for chemistry in CAM5
- Importance for climate

Simone Tilmes, AMWG, CCWG, WACCM Joint Session, February 18, 2013

Solid lines: most similar setup between CAM5 and CAM5-chem -> larger imbalance in CAM5 Model Setup CESM 1.2.2, F2000 case, CLM4.0, bgc –cn

CAM5

- Simple chemistry (see later)
- Wet and dry deposition of H₂O₂, H₂SO₄,
 SO₂ (Neu scheme for wet deposition)
- Monthly fields: HO₂, NO₃, O₃, OH
- Added H₂O external forcing for methane oxidation (solid)

CAM5-chem

- Comprehensive tropospheric and strat.
 chemistry (145 chem./aer. species)
- Only H₂O radiatively active (solid)
- Wet and dry deposition (Neu scheme for wet)
- Used to derive input fields for CAM5

- Short-wave net forcing for clear sky about the same.
- Less outgoing net short-wave radiation in CAM5 compared to CAM5-chem

-> smaller SW cloud forcing without chemistry

	CAM5	CAM5-chem
RESTOM	1.05 +/- 0.1	0.82 (0.90)
FSNT	233.9 +/- 0.2	233.1
FSNTC	286.2 +/- 0.1	286.1
SWCF	-52.3	-53.0
CLDHGH	38.2	38.5
CLDMED	27.2	27.4
CLDLOW	44.2	44.2
SO ₄ (TgS)	0.448	0.477
SO ₄ gase-phase Prod (TgS/yr)	13.33	12.69
SO₄ aqu-phase Prod (TgS/yr)	27,.83	31.16

Differences in cloud Fraction:

relative difference of high cloud frac.

Where do these differences come from? How can they be improved?

Differences between CAM5 and CAM5-chem

CAM5 : Fixed: $(N_2, O_2 H_2O_1) O_3, OH, NO_3, HO_2$ (prescribed with monthly mean values) Chemically active: $H_2O_2, H_2SO_4, SO_3, DMS_4$	CAM5-Chem : Comprehensive tropospheric and stratospheric chemistry	
SOAG Chemistry: photolysis of H_2O_2 , DMS, [usr_HO2_HO2] HO2 + HO2 -> H2O2 H2O2 + OH -> H2O + HO2 [usr_SO2_OH] SO2 + OH -> H2SO4 DMS + OH -> SO2	Photolysis, DMS, $[OH_OH_M]$ $OH + OH + M -> H2O2 + M$ $[OH_H2O2]$ $H2O2 + OH -> H2O + HO2$ $[usr_HO2_HO2]$ $HO2 + HO2 -> H2O2 + O2$ $[H2O2_O]$ $H2O2 + O -> OH + HO2$ $[CL_H2O2]$ $CL + H2O2 -> HCL + HO2$	
Aerosol formation of SO_4 : Chemically: from $SO_2 \rightarrow H_2SO4$ aq-phase (H_2O_2 , O_3), nucleation, from H_2SO_4 Added H_2SO_4 deposition (was missing in CESM1_2_0)	[usr_HO2_aer] HO2 -> 0.5*H2O2 (not in CAM5) [usr_SO2_OH] SO2 + OH -> H2SO4 DMS + OH -> SO2 -> much more comprehensive description of	
CAM5-hourly: prescribed hourly fixed fields derived using 5 year averages. CAM5-hourly-het: adding heterogeneous production of H_2O_2	<pre>chemistry (including H₂O₂ and Ozone) -> impact on SO₄ formation</pre>	

Diurnal Cycle Over Eastern US CAM-chem vs. CAM5

Monthly mean OH and HO₂ does produce too little H₂O₂ -> changes in formation of SO₄ -> impact on direct and indirect effect

- Use of hourly input file for O₃, OH, HO₃ and NO₃ (not shown) improves H₂O₂
- Additional OH+OH->H₂O₂ on aerosols, results in slightly too much H₂O₂ (not further discussed)

About 30% more processing time required for hourly input.

Comparison between CAM5-hourly and CAM5-chem

CAM5 - CAM5-chem

CAM5-hourly – CAM5-chem

CAM5 - CAM5-chem

CAM5-hourly – CAM5-chem

areas

-> large regional impact

	CAM5	CAM5- hourly	CAM5-chem	
RESTOM	1.05	1.00	0.82 (0.90)	
FSNT	233.9	233.7	233.1	e (hPa)
FSNTC	286.2	286.2	286.1	Pressur
SWCF	-52.3	-52.5	-53.0	
CLDHGH	38.2	38.3	38.5	
CLDMED	27.2	27.2	27.4	
CLDLOW	44.2	44.2	44.2	
SO4 (TgS)	0.448	0.464	0.477	
gase-phase Prod (TgS/yr)	13.33	12.34	12.69	
Aqu-phase Prod (TgS/yr)	27,.83	31.75	31.16	1

CAM5-hourly - CAM5-chem

Impact on net SW radiation at top of the atmosphere

Difference to CAM5-chem

Summary

Slightly larger TOA imbalance in CAM5 without full chemistry

- Mainly due to differences in the cloud forcing
- Slightly smaller CCN, Temp., H₂O without full chemistry
- Reduced SO₄ burden in mid- and low latitudes, overestimation in high latitude

Impact of hourly prescribed fields (30% more expensive)

- Improved representation of SO₄ formation
- Large regional impact in polluted areas
- Only small improvement of clouds and radiation

Interactive chemistry and aerosol processes cannot be reproduced with simple chemistry in CAM5

- -> Potentially larger impact in a coupled simulations
- -> Test prescribed aerosol distribution?

Question: Is there a better simplified chemistry for CAM5?