Implementation of a Cubedsphere Finite-volume Dynamical Core into CAM

Linjiong Zhou^{1,2}, Minghua Zhang¹, Steve Goldhaber³

¹ SoMAS, Stony Brook University
² LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
³ AMP, NCAR Earth System Laboratory

AMWG Winter Meeting, February 18th, 2015

Motivation

- Cubed-sphere FV dynamical core (FV3) is the latest dynamical core developed in GFDL that already been employed in the AM3/HiRAM. The Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS) is evaluating several dynamical cores for high resolution atmospheric simulations.
- □ The mainly updates from FV to FV3 are:
 - Replace lat-lon grid with cubed-sphere grid (Putman and Lin, 2007)
 - The flux-form semi-Lagrangian extension (Lin and Rood, 1996) needed to stabilize the (large time step) transport processes in FV near the poles is no longer needed (Donner et al., 2011) in FV3
 - The polar Fourier filtering is no longer needed in FV3 (Donner et al., 2011)
- Advantage:1) improved computational efficiency and communication load balancing2) higher efficiency in high resolution integration

What We Have Done

Under the instruction from Steve Goldhaber.

CESM1.2.2

Dynamics	Resolution	Model Speed*	CPU Amount
FV3	C48_f19_g16 (200km)		96
FV	f19_g16 (200km)		64
SE	ne16_g37 (200km)		64
FV3	C96_f09_g16 (100km)		216
FV	f09_g16 (100km)		128
SE	ne30_g16 (100km)		128
FV3	C192_f05_g16 (50km)		384
FV	f05_g16 (50km)		256
SE	ne60_g16 (50km)		NA

Component Setting: FAMIP/FAMIPC5 (CAM4/5+CLM4.0+RTM+DOCN+CICE) Machine: Storm, Local Cluster in SoMAS, Stony Brook University * Units: Model Year / Wall-clock Day (CAM4 / CAM5)

CESM1.2.2

Dynamics	Resolution	Model Speed*	CPU Amount
FV3	C48_f19_g16 (200km)	3.60 / 2.14	96
FV	f19_g16 (200km)	10.08 / 3.08	64
SE	ne16_g37 (200km)	2.91 / 1.77	64
FV3	C96_f09_g16 (100km)		216
FV	f09_g16 (100km)		128
SE	ne30_g16 (100km)		128
FV3	C192_f05_g16 (50km)		384
FV	f05_g16 (50km)		256
SE	ne60_g16 (50km)		NA

Component Setting: FAMIP/FAMIPC5 (CAM4/5+CLM4.0+RTM+DOCN+CICE) Machine: Storm, Local Cluster in SoMAS, Stony Brook University * Units: Model Year / Wall-clock Day (CAM4 / CAM5)

CESM1.2.2

Dynamics	Resolution	Model Speed*	CPU Amount
FV3	C48_f19_g16 (200km)	3.60 / 2.14	96
FV	f19_g16 (200km)	10.08 / 3.08	64
SE	ne16_g37 (200km)	2.91 / 1.77	64
FV3	C96_f09_g16 (100km)	4.64 / 1.85	216
FV	f09_g16 (100km)	1.72 / 0.58	128
SE	ne30_g16 (100km)	0.99 / 0.65	128
FV3	C192_f05_g16 (50km)	1.34 / 0.66	384
FV	f05_g16 (50km)	0.50 / 0.05	256
SE	ne60_g16 (50km)	NA	NA

Component Setting: FAMIP/FAMIPC5 (CAM4/5+CLM4.0+RTM+DOCN+CICE) Machine: Storm, Local Cluster in SoMAS, Stony Brook University * Units: Model Year / Wall-clock Day (CAM4 / CAM5)

CESM1.2.2

Dynamics	Resolution	Model Speed*	CPU Amount	Rate [#]
FV3	C48_f19_g16 (200km)	3.60 / 2.14	96	37.5 / 22.3
FV	f19_g16 (200km)	10.08 / 3.08	64	157.5 / 48.1
SE	ne16_g37 (200km)	2.91 / 1.77	64	45.5 / 27.7
FV3	C96_f09_g16 (100km)	4.64 / 1.85	216	21.5 / 8.6
FV	f09_g16 (100km)	1.72 / 0.58	128	13.4 / 4.5
SE	ne30_g16 (100km)	0.99 / 0.65	128	7.7 / 5.1
FV3	C192_f05_g16 (50km)	1.34 / 0.66	384	3.5 / 1.7
FV	f05_g16 (50km)	0.50 / 0.05	256	2.0 / 0.2
SE	ne60_g16 (50km)	NA	NA	NA

Component Setting: FAMIP/FAMIPC5 (CAM4/5+CLM4.0+RTM+DOCN+CICE)

Machine: Storm, Local Cluster in SoMAS, Stony Brook University

- * Units: Model Year / Wall-clock Day (CAM4 / CAM5)
- [#] Rate: Model Speed * 1000 / CPU Amount. The higher the better!

Experiments for Evaluation

CESM1.2.2

Experiment	Dynamical Core	Physical Package	Analysis Period
FV3_C4*	Cubed-sphere Finite-volume	CAM4	1981-1995 (15yrs)
FV_C4*	Lat-Ion Finite-volume	CAM4	1981-1995 (15yrs)
SE_C4 [#]	Spectral Element	CAM4	1981-1995 (15yrs)

Experiment	Dynamical Core	Physical Package	Analysis Period
FV3_C5*	Cubed-sphere Finite-volume	CAM5 (with Chem.)	1981-1995 (15yrs)
FV_C5*	Lat-Ion Finite-volume	CAM5 (with Chem.)	1981-1995 (15yrs)
SE_C5 [#]	Spectral Element	CAM5 (with Chem.)	1981-1995 (15yrs)

Component Settings:

C4: FAMIP (CAM4+CLM4.0+RTM+DOCN+CICE) C5: FAMIPC5 (CAM5+CLM4.0+RTM+DOCN+CICE) *: 200km; [#]: 100km

Cubed-sphere Grid & Lat-Ion Grid

Over the high-latitude region: Coarse resolution Over the Cubed-sphere boundary region: Fine resolution

CAM4 Zonal Wind (m/s)

Simulation of Polar Jet in CAM4 FV3 is much better

CAM5 Zonal Wind (m/s)

Simulation of Polar Jet and Equatorial zonal wind in CAM5 FV3 is slightly better

CAM4 Sea Level Pressure (mb)

The pattern of CAM4 FV3 over the polar region is more similar to ERAI

CAM5 Sea Level Pressure (mb)

The difference between FV3 and FV is much smaller in CAM5

CAM4 Sea Level Pressure (mb)

The pattern of CAM4 FV3 over the polar region is more similar to ERAI

CAM5 Sea Level Pressure (mb)

The difference between FV3 and FV is much smaller in CAM5

ANN: SPACE

CAM4

ANN: SPACE

Conclusion and Discussion

The computational efficiency of CAM FV3 becomes attractive as model resolution increases. Especially compared with CAM FV.

With CAM4 physics, FV3 improves FV simulations; with CAM5 physics, FV3 has similar or slightly worse than FV. We don't know why. Insights from you are welcome and appreciated.

On the Incident Solar Radiation in Some CMIP5 Models

Linjiong Zhou^{1,2} and Minghua Zhang¹

¹ SoMAS, Stony Brook University ² LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

AMWG Winter Meeting, February 18th, 2015

Zonal Oscillations in Some CMIP5 Models

Color Interval: 2 W/m²

Fig. 1. Annual-mean incident solar radiation at the top of atmosphere from 8 climate models in CMIP5. Units: W/m^2 .

Fig. S1. Annual-mean incident shortwave radiation at the top of atmosphere along the Equator from the general circulation models in CMIP5. Units: W/m^2 .

Calculation of Solar Zenith Angle

The formula is

Original Algorithm

$$\cos z_n = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H(t_n), \qquad (1)$$

where z is solar zenith angle, ϕ is the latitude, δ is the declination of the Sun, $H \in [-\pi, \pi)$ hour angle of the sun.

In the CESM, the solar zenith angle at each location is calculated at instantaneous time t_n and its value persists until the next radiation time step.

Fig. 2a. Equatorial instantaneous (blue solid and dashed lines) and daily-mean (red line) cosine solar zenith angle for 3-hour radiation time step based on original algorithm.

Calculation of Solar Zenith Angle

The formula is

Original Algorithm

$$\cos z_n = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H(t_n), \qquad (1)$$

where z is solar zenith angle, ϕ is the latitude, δ is the declination of the Sun, $H \in [-\pi, \pi)$ hour angle of the sun.

In the CESM, the solar zenith angle at each location is calculated at instantaneous time t_n and its value persists until the next radiation time step.

Fig. 2b. Insolation for 1hour, 2-hour and 3-hour radiation time step based on the original algorithm (blue, green, red lines).

Calculation of Solar Zenith Angle

The formula is

Revised Algorithm

$$\overline{\cos z_n} = \frac{1}{\Delta t} \int_{t_n}^{t_n + \Delta t} \cos z(t) dt = \frac{H_+^* - H_-^*}{H_+ - H_-} \sin \delta \sin \phi + \frac{\sin H_+^* - \sin H_-^*}{H_+ - H_-} \cos \delta \cos \phi$$
(2)
where $H_- \in [-\pi, \pi)$ and $H_+ \in [-\pi, \pi)$ are hour angles at t_n and $t_n + \Delta t$ at each location, and $H_-^* = \max[-h, \min(H_-, h)], H_+^* = \max[-h, \min(H_+, h)].$ *h* is the hour angle at sunset.

Similar time-averaged algorithms have been used in other models (Russell et al., 1995).

Fig. 2b. Insolation for 1hour, 2-hour and 3-hour radiation time step based on the revised algorithm (black lines).

Experiments

CESM1.2.2

Experiment Name	Algorithm	Radiation Time Step	Integration
expl	Original Algorithm	3 hours	AMIP 4 years
exp2	Original Algorithm	1 hour	AMIP 4 years
exp3	Revised Algorithm	3 hours	AMIP 4 years
exp4	Revised Algorithm	1 hour	AMIP 4 years

Fig. 3. Annual-mean FSDT, FSNTC, FSNT, FSNSC, FSNS for (left column) 1-hour radiation time step based on the revised algorithm, (middle column) the original algorithm minus the revised algorithm for 3-hour radiation time step, (right column) the original algorithm minus the revised algorithm for 1-hour radiation time step. Units: W/m^2 .

Conclusion and Discussion

- Annual-mean insolation at TOA in many CMIP5 models display spurious zonal oscillations with amplitude up to 30W/m².
- We implemented a revised algorithm in the CESM that corrects the bias from both spatial and temporal sampling errors in the original algorithm.
- The regionally biased algorithm can cause up to 24W/m² and 3W/m² difference of net surface clear-sky shortwave radiation at the Equator when 3-hourly and hourly radiation time steps are used respectively.
- □ Should be corrected in the next version of CAM and CESM.

(GRL. Zhou, Zhang et al., in revision)

Fig. 4. Difference of annual-mean downward shortwave radiation at TOA averaged between 40°S to 40°N (FSDT, dashed blue line), and the corresponding (a) differences in the amount of high, middle, low and total clouds; (b) differences in TOA shortwave and longwave cloud radiative forcing (SWCF and LWCF) using 3-hour radiation time step.