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Stokes for Glaciers
Viscosity Form

V-u=0
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0=V~§,u (V’I_JJ—F(V?_L)T) — Vp+ pg,
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1
E= 5 (Vu+ (VQ)T) .
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Stokes for Glaciers
FOSLS-ification

Rewrite as a First Order System

Definition
e % i U Uxn Usy
U=Vu= |5} 52 F2| = |V Un Us
%’f; % % Uiz U Uss
H! Elliptic system
V-u=0 (Continuity)
U=Vu (Definition)
V--u(U +2T) —Vp=—pg (Momentum)
VxU= (Freebie)
Trace(U) =0 (Enforced by setting U1 = —Uss)

v
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Stokes for Glaciers

Problems /éﬂﬁ%\

The biggest problem with this formulation comes in the definition for
viscosity.

Viscosity

1 _2
p= §A(T)*%ée 5

ée = [Ellr

£= % (Vu+ (Vu)T)

The viscosity is near infinite where the glacier experiences small

deformations. This is usually overcome by using a small constant in the
effective strain rate.
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Stokes for Glaciers
Fluidity Form

Definition

_4 9 2
27322 _ 3
e Ec = Ee

Notice that
~2 A112 .*g. 2 —4 12
g =lEllr = llec *Ellr = e *llEllp = €

¢ =
((2011)2 +2(U12 + Un ) + (_2[711)2)
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Stokes for Glaciers

Fluidity Form /4%\

Fluidity FOSLS Equations

1~ 1. Ao
¢ = 2U11 + §U122 + §U221 + Us1U9
V-u=0
¢U = Vu
1 1
V- SAT) (U+U ) Vp = —pg
V X QSQ =

Ui = —Us
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Stokes for Glaciers
Scaling /4%\

When ¢ is small, the Div and Curl equations are not of the same scale.

Scaled Curl Equation

3 i -V % U =0
This is equivalent to:
Log Form (via: Product Rule)
VxU~ (Vtlog(¢p+c) -U=0 J

Log Form has unscaled Curl equation with lower order terms.
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Q 2D Gravity Driven Glacier
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Parameters

2D Gravity Driven Glacier Aﬁ%\

Parameters
e Bed Slope (0) = 0.05

o A(T) =4 x 10724 Pa—3s!

e |g| = 9.81 m/s?
e p =900 kg/m?
e H=1000m

e L =10000 m

e n=23

Assume pressure is zero on the surface

v
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2D Gravity Driven Glacier Aﬁ%\

Cross Section

Domain

where 6 is the bed slope g = [g[[0, —1]"
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Rotated

2D Gravity Driven Glacier Aﬁ%\

Computational Domain

»
f o

(S

now g = |g[sin(0), — cos(6)]"
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2D Gravity Driven Glacier Aﬁ%\

Boundary Conditions: Top
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2D Gravity Driven Glacier Aﬁ%\

Boundary Conditions: Top
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Boundary Conditions: Bottom & Sides

2D Gravity Driven Glacier Aﬁ%\

»
e
Lr [

Bz

Assume the glacier is frozen to the bed

—

No Slip)

u=0
This also gives us

U =0 U =0
Ui =0 Uy =0
Finally, assume the periodic side boundaries.
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Boundary Conditions: Bottom & Sides

2D Gravity Driven Glacier Aﬁ%\
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|

iz

Assume the glacier is frozen to the bed

—

No Slip)

u=0

This also gives us

U =0 U =0
Ui =0 Uy =0
Finally, assume the periodic side boundaries.

Jeffery Allen Glacial FOSLS Febuary 3, 2015 12/24



Exact Solution

2D Gravity Driven Glacier Aﬁ%\

Notice that
u = [ug,us]” = [f(¢),0]"

Using this and the other assumptions, we can backtrack to find the exact
solution:

Solution
ur = A(plg|sin(0))>(H* — (H — 2)*),
Uz = 4A(plg|sin(9))*(H — 2)3,
p = plg|cos(0)(H — 2),
6 = 245 (plg|sin(0))2(H — 2)%,
Ua = 245 (plg| sin(0))(H - z),
Uy = Uy = Usy = Uy = 0.
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2D Gravity Driven Glacier

Exact Solution

Downhill Velocity Profile

Problematicpart of Viscosity
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@ Numerical Results
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Numerica

Solver (Fospack)

| Results

Fospack Solver Scheme
Repeat Steps 1-4

@ Discretize PDE

@ Newton lteration
Az = b (Linearized) /)
Solved using pCG w/ AMG

(3 Refinement (ACE/Uniform) V-Cycle
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Numerical Results
Functional Reduction

-3.41

-3.67

-3.8r

-4.0f

log(||L u" - 7}

-4.27

—4.4r

-4.6¢

® Fluidity Formulation
= Viscosity Formulation
- 0(h)

160 640
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Numerical Results
L2 Reduction

® Fluidity Formulation

m Viscosity Formulation

~~~~~~~~~~~~~~ ~ o(h?)

160 640 2560 10240 40960
Elements

Final Error:
Viscosity Formulation: 1.8 x 1073 (14 times larger)
Fluidity Formulation: 1.3 x 10~*
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Numerical Results
AMG Factor: Comparison

® Fluidity Formulation

0.8F m Viscosity Formulation

0.7

0.61

AMG Factor

160 640 2560 10240 40960 163840

Elements

0.987 = 0.58 q=~27
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Numerical Results
Work Table

Summary of the fluidity formulation’s numerical preformance. L is the
level of refinment. N is the number of Newton steps. Complexity lists the
cycle complexity for each Newton step. WU is the total number of work
units for that level. Functional refers to the nonlinear functional norm.

Level E Nonzeros N Complexity V-Cycles wu Functional
1 160 52000 2  3.59,3.79 8,7 0.121 4.13x107*
2 640 196000 1 4.10 5 0170 2.10x107*
3 2560 760480 1 4.44 4 0570 1.05x10°*
4 10240 2995360 1 4.60 3 1.745 525 x107°
5 40960 11888800 1 4.72 3 7108 2.63x107°
6 163840 47370400 1 4.80 3 28800 1.32x107°

Total 38.514
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Numerical Results
Functional: Uniform Vs. ACE

-367 ® Uniform Refinement

= ACE Refinement
-3.8f

log([|L u" - )

-4.4r

-46r, . . . . . . . !
160 439 640 1540 2560 5875 10240 21622 40960
Elements
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Numerical Results
ACE Grids r[m]y\
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Conclusions Aﬁg\

1 Glaciers are modeled By Stokes with nonlinear viscosity.

N

Viscosity become nearly infinite when the glacier experiences small
deformations.

w

Nonlinear FOSLS formulation captures the physical behavior.

N

The fluidity formulation yields better numerical performance.
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Future Work Aﬁ%\

e Benchmark Problems (ISMIP)
¢ Inclusion of Energy Model

e Time Dependent Domain
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Questions? Aﬁ%\

Questions?

Thanks to the Grandview Gang and Glaciers Group
Special Thanks to Tom, Steve, and Hari
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