Glacial FOSLS

New FOSLS Formulation of Nonlinear Stokes Flow for Glaciers

Jeffery Allen¹ Tom Manteuffel¹ Harihar Rajaram²

¹University of Colorado Boulder Department of Applied Mathematics

²University of Colorado Boulder Department of Civil, Environmental, and Architectural Engineering

CESM Land Ice Working Group Meeting Febuary 3, 2015

lottor	1 1100
Jenen	Allen

Outline:

Stokes for Glaciers

2) 2D Gravity Driven Glacier

Viscosity Form

Continuity Equation:

$$\nabla \cdot \underline{u} = 0$$

Momentum Equation:

$$0 = \nabla \cdot \frac{1}{2} \mu \left(\nabla \underline{u} + (\nabla \underline{u})^T \right) - \nabla p + \rho \underline{g},$$

Viscosity

$$\mu = \frac{1}{2}A(T)^{-\frac{1}{3}}\dot{\varepsilon}_e^{-\frac{2}{3}},$$
$$\dot{\varepsilon}_e = ||\underline{\dot{\varepsilon}}||_F,$$
$$\underline{\dot{\varepsilon}} = \frac{1}{2}\left(\nabla\underline{u} + (\nabla\underline{u})^T\right)$$

Jeffery Allen

Glacial FOSLS

FOSLS-ification

Rewrite as a First Order System

Definition

$$\underline{\underline{U}} = \nabla \underline{\underline{u}} = \begin{bmatrix} \frac{\partial u_1}{\partial x} & \frac{\partial u_2}{\partial x} & \frac{\partial u_3}{\partial x} \\ \frac{\partial u_1}{\partial y} & \frac{\partial u_2}{\partial y} & \frac{\partial u_3}{\partial y} \\ \frac{\partial u_1}{\partial z} & \frac{\partial u_2}{\partial z} & \frac{\partial u_3}{\partial z} \end{bmatrix} = \begin{bmatrix} U_{11} & U_{21} & U_{31} \\ U_{12} & U_{22} & U_{32} \\ U_{13} & U_{23} & U_{33} \end{bmatrix}$$

H^1 Elliptic system

 $\begin{aligned} \nabla \cdot \underline{u} &= 0 \qquad (\text{Continuity}) \\ \underline{\underline{U}} &= \nabla \underline{u} \qquad (\text{Definition}) \end{aligned} \\ \nabla \cdot \frac{1}{2} \mu \left(\underline{\underline{U}} + \underline{\underline{U}}^T \right) - \nabla p &= -\rho \underline{g} \qquad (\text{Momentum}) \\ \nabla \times \underline{\underline{U}} &= 0 \qquad (\text{Freebie}) \\ \text{Trace}(\underline{\underline{U}}) &= 0 \qquad (\text{Enforced by setting } U_{11} = -U_{22}) \end{aligned}$

Problems

The biggest problem with this formulation comes in the definition for viscosity.

Viscosity

$$\mu = \frac{1}{2}A(T)^{-\frac{1}{3}}\dot{\varepsilon}_e^{-\frac{2}{3}}$$
$$\dot{\varepsilon}_e = ||\underline{\dot{\varepsilon}}||_F$$
$$\underline{\dot{\varepsilon}} = \frac{1}{2}\left(\nabla\underline{u} + (\nabla\underline{u})^T\right)$$

The viscosity is near infinite where the glacier experiences small deformations. This is usually overcome by using a small constant in the effective strain rate.

Jeffer	v Allen
Jellel	

Fluidity Form

AA

Definition

$$\begin{split} \underline{\hat{U}} &= \dot{\varepsilon}_e^{-\frac{2}{3}} \underline{U} \\ \underline{\hat{\varepsilon}} &= \frac{1}{2} \left(\underline{\hat{U}} + \underline{\hat{U}}^T \right) \\ \hat{\varepsilon}_e &= ||\underline{\hat{\varepsilon}}||_F \\ \phi &= \hat{\varepsilon}_e^2 \end{split}$$

Notice that

$$\phi = \hat{\varepsilon}_e^2 = ||\underline{\hat{\varepsilon}}||_F^2 = ||\dot{\varepsilon}_e^{-\frac{2}{3}}\underline{\hat{\varepsilon}}||_F^2 = \dot{\varepsilon}_e^{-\frac{4}{3}}||\underline{\hat{\varepsilon}}||_F^2 = \dot{\varepsilon}_e^{-\frac{4}{3}}\dot{\varepsilon}_e^2 = \dot{\varepsilon}_e^{\frac{2}{3}}$$
$$\phi = \frac{1}{4} \left((2\hat{U}_{11})^2 + 2(\hat{U}_{12} + \hat{U}_{21})^2 + (-2\hat{U}_{11})^2 \right)$$

Fluidity Form

Fluidity FOSLS Equations

$$\phi = 2\hat{U}_{11}^2 + \frac{1}{2}\hat{U}_{12}^2 + \frac{1}{2}\hat{U}_{21}^2 + \hat{U}_{21}\hat{U}_{21}$$
$$\nabla \cdot \underline{u} = 0$$
$$\phi \underline{\hat{U}} = \nabla \underline{u}$$
$$\nabla \cdot \frac{1}{2}A(T)^{-\frac{1}{3}} \left(\underline{\hat{U}} + \underline{\hat{U}}^T\right) - \nabla p = -\rho \underline{g}$$
$$\nabla \times \phi \underline{\hat{U}} = 0$$
$$U_{11} = -U_{22}$$

1 - 44	· • • • • • • •
IATTAN	/ Allon

Scaling

When ϕ is small, the Div and Curl equations are not of the same scale.

Scaled Curl Equation

$$\frac{1}{\phi + c} \nabla \times \phi \underline{\underline{\hat{U}}} = 0$$

This is equivalent to:

Log Form (via: Product Rule)

.

$$\nabla \times \underline{\hat{U}} - (\nabla^{\perp} \log(\phi + c)) \cdot \underline{\hat{U}} = 0$$

Log Form has unscaled Curl equation with lower order terms.

Outline:

1) Stokes for Glaciers

Parameters

Parameters

- Bed Slope (θ) = 0.05
- $A(T) = 4 \times 10^{-24} \text{ Pa}^{-3} \text{s}^{-1}$
- $|g| = 9.81 \text{ m/s}^2$
- $\rho = 900 \text{ kg/m}^3$
- *H* = 1000 m
- *L* = 10000 m
- *n* = 3
- Assume pressure is zero on the surface

Cross Section

where θ is the bed slope $\underline{g} = |g|[0, -1]^T$

 $\operatorname{now} \underline{g} = |g| [\sin(\theta), -\cos(\theta)]^T$

Boundary Conditions: Top

For the Top boundary we want to impose a stress free condition

$$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = 0$$

$$\underline{\underline{\sigma}} = \underline{\underline{\hat{U}}} + \underline{\underline{\hat{U}}}^T - pI$$

$$\begin{bmatrix} 2\hat{U}_{11} - p & \hat{U}_{12} + \hat{U}_{21} \\ \hat{U}_{21} + \hat{U}_{12} & 2\hat{U}_{22} - p \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \hat{U}_{12} + \hat{U}_{21} \\ 2\hat{U}_{22} - p \end{bmatrix} = 0$$

Boundary Conditions: Top

For the Top boundary we want to impose a stress free condition

$$\underline{\underline{\sigma}} \cdot \underline{\underline{n}} = 0$$

$$\underline{\underline{\sigma}} = \underline{\underline{\hat{U}}} + \underline{\underline{\hat{U}}}^T - pI$$

$$\begin{bmatrix} 2\hat{U}_{11} - p & \hat{U}_{12} + \hat{U}_{21} \\ \hat{U}_{21} + \hat{U}_{12} & 2\hat{U}_{22} - p \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \hat{U}_{12} + \hat{U}_{21} \\ \hat{U}_{11} \end{bmatrix} = 0$$

Boundary Conditions: Bottom & Sides

Assume the glacier is frozen to the bed (No Slip)

 $\underline{u} = 0$

This also gives us

$$U_{11} = 0$$
 $U_{21} = 0$
 $\hat{U}_{11} = 0$ $\hat{U}_{21} = 0$

Finally, assume the periodic side boundaries.

Jeffery Allen

Boundary Conditions: Bottom & Sides

Assume the glacier is frozen to the bed (No Slip)

 $\underline{u} = 0$

This also gives us

$$U_{11} = 0$$
 $U_{21} = 0$
 $\hat{U}_{11} = 0$ $\hat{U}_{21} = 0$

Finally, assume the periodic side boundaries.

Jeffery Allen

Exact Solution

Notice that

$$\underline{u} = [u_1, u_2]^T = [f(z'), 0]^T$$

Using this and the other assumptions, we can backtrack to find the exact solution:

Solution

$$u_{1} = A(\rho|g|\sin(\theta))^{3}(H^{4} - (H - z)^{4}),$$

$$U_{12} = 4A(\rho|g|\sin(\theta))^{3}(H - z)^{3},$$

$$p = \rho|g|\cos(\theta)(H - z),$$

$$\phi = 2A^{\frac{2}{3}}(\rho|g|\sin(\theta))^{2}(H - z)^{2},$$

$$\hat{U}_{12} = 2A^{\frac{1}{3}}(\rho|g|\sin(\theta))(H - z),$$

$$u_{2} = \hat{U}_{11} = \hat{U}_{21} = \hat{U}_{22} = 0.$$

Exact Solution

Outline:

Stokes for Glaciers

2) 2D Gravity Driven Glacier

Solver (Fospack)

Functional Reduction

 L^2 Reduction

Final Error: Viscosity Formulation: 1.8×10^{-3} Fluidity Formulation: 1.3×10^{-4}

(14 times larger)

Jeffery Allen

Glacial FOSLS

AMG Factor: Comparison

 $0.98^q = 0.58 \qquad q \approx 27$

Work Table

Summary of the fluidity formulation's numerical preformance. L is the level of refinment. N is the number of Newton steps. Complexity lists the cycle complexity for each Newton step. WU is the total number of work units for that level. Functional refers to the nonlinear functional norm.

Level	E	Nonzeros	Ν	Complexity	V-Cycles	WU	Functional
1	160	52000	2	3.59, 3.79	8, 7	0.121	4.13×10^{-4}
2	640	196000	1	4.10	5	0.170	2.10×10^{-4}
3	2560	760480	1	4.44	4	0.570	1.05×10^{-4}
4	10240	2995360	1	4.60	3	1.745	5.25×10^{-5}
5	40960	11888800	1	4.72	3	7.108	2.63×10^{-5}
6	163840	47370400	1	4.80	3	28.800	1.32×10^{-5}
					Total	38.514	

Functional: Uniform Vs. ACE

Jeffery Allen	Glacial FOSLS	Febuary 3, 2015	20 / 24

ACE Grids

- 1 Glaciers are modeled By Stokes with nonlinear viscosity.
- 2 Viscosity become nearly infinite when the glacier experiences small deformations.
- 3 Nonlinear FOSLS formulation captures the physical behavior.
- 4 The fluidity formulation yields better numerical performance.

- Benchmark Problems (ISMIP)
- Inclusion of Energy Model
- Time Dependent Domain

Questions?

Thanks to the Grandview Gang and Glaciers Group Special Thanks to Tom, Steve, and Hari