Free boundaries and conservation equations in ice sheet models

Ed Bueler

Dept of Mathematics and Statistics, and Geophysical Institute University of Alaska Fairbanks

CESM LIWG 2015

Outline

(1) The problem I'm worried about:

- Time-stepping free-boundary fluid layer models.
(2) Practical consequences:
- Limitations to discrete conservation.
- Need for weak numerical free boundary solutions.

A fluid layer in a climate

- mass conservation PDE for a layer:

$$
h_{t}+\nabla \cdot \mathbf{q}=f
$$

- h is a thickness: $h \geq 0$
- mass conservation PDE applies only where $h>0$
- \mathbf{q} is flow (vertically-integrated)
- source f is "climate"; $f>0$ shown downward

A fluid layer in a climate: the troubles

- $h=0$ and what else at free boundary?
- shape at free boundary depends on both \mathbf{q} and f
- $f<0$ not "detected" by model where $h=0$
- $f \approx 0$ threshold behavior

A fluid layer in a climate: the troubles

- $h=0$ and what else at free boundary?
- shape at free boundary depends on both \mathbf{q} and f
- $f<0$ not "detected" by model where $h=0$
- how to do mass conservation accounting?
- $f \approx 0$ threshold behavior

A fluid layer in a climate: the troubles

- $h=0$ and what else at free boundary?
- shape at free boundary depends on both \mathbf{q} and f
- $f<0$ not "detected" by model where $h=0$
- how to do mass conservation accounting?
- $f \approx 0$ threshold behavior
- $h>0$ as soon as $f<0$ switches to $f>0$

A concern driven by practical modeling

- the icy region is nearly-fractal and disconnected
- currently in PISM*:
- explicit time-stepping
- free boundary by truncation
- want for PISM:
- implicit time steps
- better conservation accounting to user
*= Parallel Ice Sheet Model, pism-docs.org

Examples

glaciers

tidewater marsh

ice shelves \& sea ice

tsunami inundation and subglacial hydrology, supraglacial runoff, surface hydrology, ...

Anyone numerically-solved these problems before?

- yes, of course!
- generic result: ad hoc schemes near the free boundary

glacier ice
on steep terrain
(Jarosch, Schoof, Anslow, 2013)

volume-of-fluid method at ice shelf fronts (Albrecht et al, 2011)

volume-of-fluid method at glacier surface (Jouvet et al 2008)

New goals

- I don't mind "if . . .then . . ." in my code, but I want to know what mathematical problem is behind it
- maintaining code with those ad hoc schemes scares the \#!*\& out of me
- my goals:
- redefine the problem so free boundary is part of solution
- tell the model user what is going on at the free boundary
- find numerical schemes which automate the details

Numerical models must discretize time

$$
h_{t}+\nabla \cdot \mathbf{q}=f \quad \rightarrow \quad \frac{H_{n}-H_{n-1}}{\Delta t}+\nabla \cdot \mathbf{Q}_{n}=F_{n}
$$

- semi-discretize in time: $H_{n}(x) \approx h\left(t_{n}, x\right)$
- the new equation is a "single time-step problem"
- a PDE in space where $H_{n}>0$
- called the "strong form"
- details of flux \mathbf{Q}_{n} and source F_{n} come from time-stepping scheme

1D time-stepping examples

same:

- equation
$\frac{H_{n}-H_{n-1}}{\Delta t}+\nabla \cdot \mathbf{Q}_{n}=f$
- climate f
- bed shape
- constrainedNewton scheme

how different are the fluxes \mathbf{Q}_{n} ?

1D time-stepping examples

$\mathbf{Q}_{n}=v_{0} H_{n}$ hyperbolic
(constant velocity)

$$
\begin{aligned}
& \mathbf{Q}_{n}=-\Gamma\left|H_{n}\right|^{n+2} \\
& \quad \cdot\left|\nabla h_{n}\right|^{n-1} \nabla h_{n}
\end{aligned}
$$

highly-nonlinear diffusion

Subsets for time-stepping and conservation

- suppose H_{n} solves the single time-step problem
- define

$$
\begin{aligned}
& \Omega_{n}=\left\{H_{n}(x)>0\right\} \\
& \Omega_{n}^{r}=\left\{H_{n}(x)=0 \text { and } H_{n-1}(x)>0\right\} \quad \leftarrow \text { retreat set }
\end{aligned}
$$

Ω_{n}^{r}
Ω_{n}

Reporting discrete conservation

- define:

$$
M_{n}=\int_{\Omega} H_{n}(x) d x \quad \text { mass at time } t_{n}
$$

- then

$$
\begin{aligned}
M_{n}-M_{n-1} & =\int_{\Omega_{n}} \frac{\Delta t\left(-\nabla \cdot \mathbf{Q}_{n}+F_{n}\right)}{H_{n}-H_{n-1}} d x+\int_{\Omega_{n}^{r}} 0-H_{n-1} d x \\
= & \Delta t\left(0+\int_{\Omega_{n}} F_{n} d x\right)-\int_{\Omega_{n}^{r}} H_{n-1} d x
\end{aligned}
$$

- new term:

$$
R_{n}=\int_{\Omega_{n}^{r}} H_{n-1} d x \quad \text { retreat loss during step } n
$$

Reporting discrete conservation: limitation

- the retreat loss R_{n} is not balanced by the climate
- R_{n} is caused by the climate, but we don't know a computable integral to balance it
- we must track three time series:
- mass at time $t_{n}: \quad M_{n}=\int_{\Omega} H_{n}(x) d x$
- climate (e.g. surface mass bal.) over current fluid-covered region:

$$
C_{n}=\Delta t \int_{\Omega_{n}} F_{n} d x \approx \int_{t_{n-1}}^{t_{n}} \int_{\Omega_{n}} f(t, x) d x d t
$$

- retreat loss during time step: $\quad R_{n}=\int_{\Omega_{n}^{r}} H_{n-1} d x$
- now it balances:

$$
M_{n}=M_{n-1}+C_{n}-R_{n}
$$

Reporting discrete conservation: $R_{n} \rightarrow 0$ as $\Delta t \rightarrow 0$

Weak form incorporates constraint

- define:

$$
\mathcal{K}=\left\{v \in W^{1, p}(\Omega) \mid v \geq 0\right\}=\text { admissible thicknesses }
$$

- we say $H_{n} \in \mathcal{K}$ solves the weak single time-step problem if

$$
\int_{\Omega} H_{n}\left(v-H_{n}\right)-\Delta t \mathbf{Q}_{n} \cdot \nabla\left(v-H_{n}\right) \geq \int_{\Omega}\left(H_{n-1}+\Delta t F_{n}\right)\left(v-H_{n}\right)
$$

for all $v \in \mathcal{K}$

- derive this variational inequality from:
\diamond the strong form and
\diamond integration-by-parts and
\diamond arguments about $H_{n}=0$ areas

Weak solves strong, and it gives more info

- assume $\mathbf{Q}_{n}=0$ when $H_{n}=0$
- this means \mathbf{Q}_{n} describes a layer
- assume $H_{n} \in \mathcal{K}$ solves weak single time-step problem
- then
(1) PDE applies on the set where $H_{n}>0$:

$$
\frac{H_{n}-H_{n-1}}{\Delta t}+\nabla \cdot \mathbf{Q}_{n}=F_{n}
$$

(2) information on the set where $H_{n}=0$:

$$
H_{n-1}+\Delta t F_{n} \leq 0
$$

- this means "mass balance was negative enough during time step to remove old thickness"

Numerical solution of the weak problem

the weak single time-step problem:

- is nonlinear because of constraint (even for \mathbf{Q}_{n} linear in H_{n})
- can be solved by a Newton method modified for constraint
- reduced set method
- semismooth method
- scalable implementations are in PETSc 3.5
- see "SNESVI" object

Summary

- layer flow model has conservation eqn. $h_{t}+\nabla \cdot \mathbf{q}=f$
- long time steps wanted, but this is a free-boundary problem ...
- claim: exact discrete conservation requires tracking retreat loss
- in addition to computable integrals of climate
- it only disappears in $\Delta t \rightarrow 0$ limit
- suggestions:
- include constraint on thickness: $h \geq 0$
- pose single time-step problem weakly as variational inequality
- solve it numerically by constrained-Newton method
- these are agnostic claims/suggestions, with respect to:
- form of the flux \mathbf{q}
- spatial discretization paradigm (i.e. finite diff./volume/element)

