GCM - Ice Model Coupling: Adventures in Energy Conservation

Robert Fischer, Sophie Nowicki, Max Kelley, Gavin Schmidt

NASA Goddard Institute of Space Studies New York City

October 13, 2014

Synchronous Two-Way Coupling

Important to resolve transients (human timescales).

Challenge:

- Balance mass and energy budget for (potentially) non-conservative ice model.
- Compute non-conservation; dump extra in ocean.

(日本)(日本)(日本)(日本)

Three Models, Three Grids

Energy Budget

Account for energy flux in each 2D ice grid cell:

$$\psi(x, y, t) = \psi_0 + \int_{t_0}^t (e_s + e_b + e_c + h_s + h_b + h_i + \nabla \cdot \psi \mathbf{u} + \epsilon) dt$$

Energy Budget

Account for energy flux in each 2D ice grid cell:

$$\psi(x, y, t) = \psi_0 + \int_{t_0}^t (e_s + e_b + e_c + h_s + h_b + h_i + \nabla \cdot \psi \mathbf{u} + \epsilon) dt$$

ψ_0	= Initial enthalpy state of ice sheet	J/m^2
ψ	= Enthalpy of ice sheet	
u	= Ice velocity field	m/s
e _s	= Enthalpy flux of SMB (from snow/firn)	W/m^2
e_b	= Enthalpy flux of runoff	
e_c	= Enthalpy flux of calving	
h _s	= Conductive heat flux through top surface	W/m^2
h _b	= Conductive basal heat flux	
h _i	= Strain heating rate	
ϵ	= Unaccounted energy flux	

- GCMs do not track gravitational potential.
- GCM must dispose of $h_i + \epsilon$ in non-physical way.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Coupling Fields

Initialization: Ice Model \rightarrow GCM

- 1. T, top of ice sheet
- 2. Depth of top layer
- 3. Elevation on ice grid

GCM Computes:

1. Conductive Heat Flux

$\textbf{GCM} \rightarrow \textbf{Ice Model}$

- 1. Surface Mass Balance
- 2. Enthalpy of SMB
- 3. *T* at bottom of ice surface model

Ice Model \rightarrow GCM

Mass and Enthalpy:

- 1. SMB
- 2. Internal Advection
- 3. Basal Runoff
- 4. Vertically-Integrated State
- 5. ϵ non-conservation (mass, energy)

Energy:

- 1. Strain Heating
- 2. Geothermal Flux

Other:

- 1. T, top of ice sheet
- 2. Depth of top layer
- 3. Elevation on ice grid

Step 1: Initialization

Elevation (m)

Surface T ($^{\circ}C$)

Depth of Top Grid Point (m)

- 3

Step 2: GCM \longleftrightarrow Ice Heat Flow

Goal:

Compute q_n , heat flux between models **Challenges:**

- 1. Differing Parameterizations
 - Solving heat equation between FD and non-FD model.
 - This FD ice model has no gridpoint at surfce.
- 2. Differing scales
 - Large Δz yields large ΔT, inappropriate for small scale of z₁...z_n.
 - *T_{n+1}* doesn't change over multiple timesteps for *T_n*

Step 3: GCM Outputs

 $\begin{array}{c} \mbox{Surface Mass Balance} \\ (\mbox{kg}\,\mbox{m}^{-2}\,\mbox{s}^{-1}) \end{array}$

Surface T ($^{\circ}$ C)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

PISM Mass Budget (kg m⁻² s⁻¹)

Surface Mass Balance Internal Advection

Basal Runoff

PISM Mass Budget $(kg m^{-2} s^{-1})$

 ϵ : mass

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

PISM Energy Budget: Enthalpy Flux (W/m^2)

Surface Mass Balance Internal Advection

Basal Runoff

・ロト ・聞ト ・ヨト ・ヨト

PISM Energy Budget: Heat Flux (W/m^2)

Strain Heating

Geothermal Flux

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

PISM Energy Budget: Results (W m^{-2})

Total Enthalpy Flux

 ϵ : enthalpy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Discussion

Why the enthalpy problem? Possibilities:

- No grid point at top of ice model? (Uncontrolled forcing when setting Dirichlet BC)
- Disparate time and space scales? (with explicit timestepping at model interface)
- Would Neumann BC for ice model help?
- Problematic parameterization in ice surface?
- Just a spin-up problem?
- ▶ We will find out with 1-D prototype.

Thanks to Ed Bueler, Constantine Khroulev, Andy Aschwanden and the PISM Team

