Update on the Albany/FELIX First Order Stokes Solver and the CISM-Albany and MPAS-Albany Dycores

Irina Kalashnikova, Mauro Perego, Andy Salinger, Ray Tuminaro, Steve Price, Matt Hoffman

Sandia National Laboratories*

CESM Land Ice Working Group Meeting February 2-3, 2015

NCAR - MESA Lab Boulder, CO
*Sandia is a multiprogram laborattory operated by Sandia corporation, a Lockheed Martin

Sandia's Role in the PISCEES Project:

Albany/FELIX, CISM-Albany, MPAS-Albany

PISCEES = "Predicting Climate and Evolution at Extreme Scales"
(SciDAC application partnership b/w DOE's BER + ASCR Divisions, began June 2012, 5 years).

- Sandia's Role in PISCEES: to develop and support a production-ready robust \& scalable unstructured grid finite element land ice dycore based on the "first-order" (FO) Stokes physics.
[Computational Science Flavor]

Albany/FELIX
(Part I of talk)

CISM-Albany and MPAS-Albany
(Part II of talk)
[Climate Science/
Applied Flavor]

Dynamic solver for ice sheet evolution PDEs (thickness \& temperature advection-diffusion PDEs)
balance (FO Stokes PDEs)

Implemented by writing interfaces b/w Albany and CISM/MPAS codes

Implemented in a Sandia (open-source) parallel C++ component-based FE code:

Solvers, preconditioners, automatic differentiation, FE library, performance-portable kernels, meshes, ..

Parameter estimation, UQ, optimization, Bayesian inference.

CISM/MPAS (dynamic):
ice sheet evolution PDEs (thickness/temp. evolution)

Production code for long-term use in ACME.

Recap of 2012-14 Progress

Use of Trilinos components has enabled rapid development of Albany/FELIX!

2012	2013	2014
- Implement FO Stokes PDEs and relevant BCs in Albany code \rightarrow Albany/ FELIX solver is born. - Verify Albany/FELIX on MMS and canonical benchmark problems. - Preliminary performance (robustness and scalability) studies.	- Import GIS/AIS data (β, temperature,...) into Albany/FELIX in various mesh formats (structured hex \& tet, unstructured). - Couple Albany/FELIX to MPAS and CISM codes. - Convergence/performance studies on GIS. - Deterministic inversion for initialization (in LifeV). - Bayesian calibration for initialization.	- Implementation of adjoints for deterministic inversion in Albany. - Scalability studies on large-scale GIS and AIS problems. - Performance portability in Albany/FELIX MiniApp. - Continued maturation of CISMAlbany and MPAS-Albany. - GMD, ICCS, SISC papers submitted/in progress.

Recap of 2012-14 Progress

Use of Trilinos components has enabled rapid development of Albany/FELIX!
$\frac{2012}{\text { - Implement FO Stokes PDEs }}$ and relevant BCs in Albany code \rightarrow Albany/ FELIX solver is born.

- Verify Albany/FELIX on MMS and canonical benchmark problems.
- Preliminary performance (robustness and scalability) studies.

1

Part I: The Albany/FELIX First Order (FO) Stokes Solver

- PDEs: first-order (FO) Stokes PDEs with Glen's law viscosity. 1 bany $\left\{-\nabla \cdot\left(2 \mu \dot{\epsilon}_{1}\right)=-\rho g \frac{\partial s}{\partial x}\right.$
- Discretization: unstructured grid finite element method (FEM).
$\left\{-\nabla \cdot\left(2 \mu \dot{\epsilon}_{2}\right)=-\rho g \frac{\partial s}{\partial y}\right.$
- Meshes: structured hex, structured tet, unstructured tet.
- Nonlinear solver: full Newton with analytic (automatic differentiation) derivatives and homotopy continuation.

$$
\mu=\frac{1}{2} A^{-\frac{1}{n}}\left(\frac{1}{2} \sum_{i j} \dot{\epsilon}_{i j}{ }^{2}+\gamma\right)^{\left(\frac{1}{2 n}-\frac{1}{2}\right)}
$$

- Iterative linear solver: CG or GMRES with ILU or AMG preconditioner.

- Advanced analysis capabilities: sensitivities, UQ, responses, adjoint-based optimization.

Part I: The Albany/FELIX First Order (FO) Stokes Solver

- PDEs: first-order (FO) Stokes PDEs with Glen's law viscosity. (ll bany
- BCs: stress-free, basal, floating ice, kinematic. bHill
- Discretization: unstructured grid finite element method (FEM).

$$
\left\{\begin{array}{l}
-\nabla \cdot\left(2 \mu \dot{\epsilon}_{1}\right)=-\rho g \frac{\partial s}{\partial x} \\
-\nabla \cdot\left(2 \mu \dot{\epsilon}_{2}\right)=-\rho g \frac{\partial s}{\partial y}
\end{array}\right.
$$

- Meshes: structured hex, structured tet, unstructured tet.
- Nonlinear solver: full Newton with analytic (automatic differentiation) derivatives and homotopy continuation.

$$
\mu=\frac{1}{2} A^{-\frac{1}{n}}\left(\frac{1}{2} \sum_{i j} \dot{\epsilon}_{i j}{ }^{2}+\gamma\right)^{\left(\frac{1}{2 n}-\frac{1}{2}\right)}
$$

- Iterative linear solver: CG or GMRES with ILU or AMG preconditioner.

- Advanced analysis capabilities: sensitivities, UQ, responses, adjoint-based optimization.

Highlights of Recent Work:

- Built-in adjoints for inversion.
- AIS scaling studies (CG vs. GMRES, ILU vs. new AMG preconditioner aggressive semi-coarsening).

- Performance-portable kernels.

Implementation of Adjoints in

 Albany/FELIX for Deterministic Inversion2-8 km unstructured tet mesh, 10 layers

Objective Functional* to be minimized:

$$
\mathcal{J}(\mathbf{u}(\beta), \beta)=\int_{\Sigma} \frac{1}{\sigma_{u}^{2}}\left|\mathbf{u}-\mathbf{u}^{o b s}\right|^{2} d s+\alpha \int_{\Sigma}|\nabla \beta|^{2} d s
$$

Subject to: FO Stokes PDEs.

Software details:

- Adjoints and derivatives w.r.t. parameters are computed using automatic differentiation (Sacado).
- Reduced gradient based optimization performed using ROL (Rapid Optimization Library, part of Trilinos).
- Optimization Algorithm: Limited-Memory BFGS

*Perego, Price, Stadler, JGR, 2014

Geometry and fields:

(Conford, Martin, et al, in prep.) BEDMAP2 (Fretwell et al. 2013) Temperature (Pattyn, 2010)

Collaborators: E. Phipps, D. Ridzal, D. Kouri (SNL)

Albany/FELIX Weak Scaling on a Moderate-Resolution AIS Problem

- Weak scaling study on AIS problem ($8 \mathrm{~km} \mathrm{w} / 5$ layers $\rightarrow 2 \mathrm{~km}$ with 20 layers).
- Initialized with realistic basal friction (from deterministic inversion) and temperature field from BEDMAP2 (thanks to D. Martin!)
- Iterative linear solver: GMRES.
- Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening (Kalashnikova et al GMD 2014, Kalashnikova et al ICCS 2015, Tuminaro et al SISC 2015).

GMRES less sensitive than CG to rounding errors from ill-conditioning [also minimizes different norm].

AMG preconditioner less sensitive than ILU to ill-conditioning.
(vertical > horizontal coupling)
$+$ Neumann BCs $=$ nearly singular submatrix associated with vertical lines

Performance-Portability of Albany/FELIX

We need to be able to run Albany/FELIX on new architecture machines (hybrid systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

- Kokkos: Trilinos library that provides performance portability across diverse devises with different memory models.
- With Kokkos, you write an algorithm once, and just change a template parameter to get the optimal data layout for your hardware.
- Work in progress: converting Albany to use Kokkos kernels
- Albany/FELIX MiniApp for FE Assembly using Kokkos.
- Albany branch based on Tpetra released Oct. 2014 on github.

Albany/FELIX MiniApp 20km GIS

Collaborator: I. Demeshko (SNL)

Part II: CISM-Albany \& MPAS-Albany

 Interfaces

- Both available on github .
- Both use forward Euler time-stepping*.
- Same BCs available (free-surface, basal friction, floating ice, kinematic Dirichlet) in CISMAlbany and MPAS-Albany.

Production codes for long-term use in ESMs through ACME project!
*Some differences in evolution schemes: FV upwinding, flux-corrected transport for MPAS, incremental remap for CISM.

New BCs : Floating Ice (CISM-Albany) and Kinematic Lateral (CISM-,MPAS-Albany)

- Floating ice lateral BCs (for ice shelves): assumes ice is in hydrostatic equilibrium with water/air around it.
- Kinematic lateral BCs: values of ice velocities are specified on lateral boundaries.

Lateral boundaries identified in CISM/MPAS, data passed to Albany.

CISM-Albany

Glissade

Progress Towards Transient
 Simulations in CISM-, MPAS-Albany

	CISM-Albany	MPAS-Albany
Variable β field	X	X
Temperature-based flow factor	X	X
Upstream ∇s calculation	X	
Floating ice BCs	X	X
Kinematic lateral BCs	X	X
Upwinding*	X	X
Incremental Remap*	X	X
Flux-Corrected Transport*		

New since CESM Annual Meeting
Coming soon
Needs further testing

Other planned future work on evolution solvers (MPAS/CISM):

- Circumventing CFL restrictions for explicit advection schemes.
- RK-4 time-integrator for MPAS-LI.

> Above: 100 year 4 km GIS transient simulation using CISM-Albany converged on Hopper out-of-the box!

Progress Towards Transient
 Simulations in CISM-, MPAS-Albany

	CISM-Albany	MPAS-Albany
Variable β field	X	X
Temperature-based flow factor	X	X
Upwind ∇s calculation	X	
Floating ice BCs	X	X
Kinematic lateral BCs	X	X
Upwinding*	X	X
Incremental Remap*	X	X
Flux-Corrected Transport*		

Needs further testing
advection schemes.
Other planned future work on evolution solvers (MPAS/CISM):

- Circumventing CFL restrictions for explicit
- RK-4 time-integrator for MPAS-LI.

Above: 100 year 4 km GIS transient simulation using CISM-Albany converged on Hopper out-of-the box!

AIS transient simulations
 run too as of last week!

Summary and Future Work

Summary:

- Continued maturing and ripening of Albany/FELIX (scalability, verification, adjoints, performance portability).
- CISM-Albany and MPAS-Albany are ready for science runs.
- Use of Trilinos components results in code with dozens of built in advanced analysis capabilities (sensitivity analysis, responses, UQ, ...)

Progress has been made towards release of a production code supported for long-term use in ACME.

Ongoing/future work:

- Dynamic simulations of ice evolution for GIS \& AIS problems.
- Deterministic inversion/calibration using new adjoint capabilities in Albany/FELIX.
- Bayesian inference/UQ.
- Porting to hybrid/new architecture machines.
- GMD, ICCS, SISC papers in review/preparation.
- Delivering code to users in climate community through coupling to ESMs.

Funding/Acknowledgements

Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) projects funded by the U.S. Department of Energy, Office of Science (OSCR), Advanced Scientific Computing Research and Biological and Environmental Research (BER) \rightarrow PISCEES SciDAC Application Partnership.

Sandia National Laboratories

National Laboratory

SciDAC
Scientific Discowcy
through
Advanced Computing

PISCEES team members: W. Lipscomb, S. Price, M. Hoffman, A. Salinger, M. Perego, I. Kalashnikova, R. Tuminaro, P. Jones, K. Evans, P. Worley, M. Gunzburger, C. Jackson; Trilinos/Dakota collaborators: E. Phipps, M. Eldred, J. Jakeman, L. Swiler.

Thank you! Questions?

References

[1] M.A. Heroux et al. "An overview of the Trilinos project." ACM Trans. Math. Softw. 31(3) (2005).
[2] A.G. Salinger et al. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", Comput. Sci. Disc. (in prep).
[3] I. Kalashnikova, M. Perego, A. Salinger, R. Tuminaro, S. Price. "Albany/FELIX: A Parallel, Scalable and Robust Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", Geosci. Model Develop. Discuss. 7 (2014) 8079-8149 (under review for GMD).
[4] I. Kalashnikova, R. Tuminaro, M. Perego, A. Salinger, S. Price. "On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets", MSESM/ICCS15, Reykjavik, Iceland (June 2014).
[5] R.S. Tuminaro, I. Kalashnikova, M. Perego, A.G. Salinger. "A Hybrid Operator Dependent MultiGrid/Algebraic Multi-Grid Approach: Application to Ice Sheet Modeling", SIAM J. Sci. Comput. (in prep).
[6] M. Perego, S. Price, G. Stadler. "Optimal initial conditions for coupling ice sheet models to ESMs", J. Geophys. Res. 119 (2014) 1894-1917.

Appendix: Code Verification and Performance

- Implementation of PDEs + BCs (no-slip, stress-free, basal sliding, open-ocean) has been verified through MMS tests (right) and code-to-code comparisons (confined-shelf, below).

Appendix: Albany/FELIX GIS Controlled Weak Scaling Study

In collaboration with:

R. Tuminaro (SNL)

New ML preconditioner

- Weak scaling study with fixed dataset, 4 mesh bisections.
- ~70-80K dofs/core.
- Conjugate Gradient (CG) iterative method for linear solves (faster convergence than GMRES).
- New algebraic multigrid preconditioner (ML) developed by R. Tuminaro based on semicoarsening (coarsening in z direction only).
- Significant improvement in scalability with new ML preconditioner over ILU preconditioner!

Appendix: Albany/FELIX GIS Controlled Weak Scaling Study

In collaboration with:

R. Tuminaro (SNL)

New ML preconditioner
Weak Scalability: $8 \mathrm{~km}, 4 \mathrm{~km}, 2 \mathrm{~km}, 1 \mathrm{~km}, 500 \mathrm{~m}$ GIS

4 cores 334K dofs 8 km GIS, 5 vertical layers

ILU preconditioner
Weak Scalability: $8 \mathrm{~km}, 4 \mathrm{~km}, 2 \mathrm{~km}, 1 \mathrm{~km}, 500 \mathrm{~m}$ GIS

- Significant improvement in scalability with new ML preconditioner over ILU preconditioner!

Collaborators: R. Tuminaro (SNL)

Appendix: Albany/FELIX Strong Scaling On a Fine-Resolution GIS Problem

- Strong scaling study on 1 km GIS with 40 vertical layers (143M dofs, hex elements).
- Initialized with realistic basal friction (from deterministic inversion) and temperature fields \rightarrow interpolated from coarser to fine mesh.
- Iterative linear solver: CG.
- Preconditioner: ILU vs. new AMG (based on aggressive semi-coarsening).

ILU preconditioner scales better than AMG but ILU-preconditioned solve is slightly slower (see ICCS 2015 paper [4]).

Sandia National Laboratories

Collaborators: S. Price,
W. Lipscomb, M.

Hoffman (LANL)

Appendix: Calculation of Surface Height Gradients in CISM-Albany

- In the FEM there are several ways to calculate ∇s for RHS in FO Stokes in each element e :

New to CISM-Albany (not available in MPAS-Albany)

1. $\nabla s^{e}=\sum_{i=1}^{\# \text { nodes }} s_{i}^{e} \nabla \phi_{i}{ }^{e}$,

s passed to Albany from CISM
2. $\nabla s^{e}=\sum_{i=1}^{\# \text { nodes }} \nabla$ sie ϕ_{i}^{e}

∇s passed to Albany from CISM
$\phi_{i}{ }^{e}=$ finite element shape functions $s_{i}{ }^{e}=$ values of s at node i of element e

2(a): Vsie calculated using central difference 2(b): Vsie calculated using forward difference

Analytic thickness

Modeled - Analytic thickness

Halfar test case ($\mathbf{t}=100$ years)

1 and 2(a): checkerboard pattern in thickness error.

2(b): checkerboard pattern in thickness error vanishes.

Observed by B. Lipscomb at CESM Annual Meeting 2014.

Collaborators: S. Price,
W. Lipscomb, M.

Hoffman (LANL)

Appendix: Calculation of Surface Height Gradients in CISM-Albany

- In the FEM there are several ways to calculate ∇s for RHS in FO Stokes in each element e :

New to CISM-Albany (not available in MPAS-Albany)

1. $\nabla s^{e}=\sum_{i=1}^{\# \text { nodes }} s_{i}^{e} \nabla \phi_{i}{ }^{e}$,

s passed to Albany from CISM
2. $\nabla s^{e}=\sum_{i=1}^{\# \text { nodes }} \nabla$ sie ϕ_{i}^{e}

∇s passed to Albany from CISM
$\phi_{i}{ }^{e}=$ finite element shape functions $s_{i}{ }^{e}=$ values of s at node i of element e

2(a): Vsie calculated using central difference 2(b): Vsie calculated using forward difference

Halfar test case ($\mathrm{t}=100$ years)

1 and 2(a): checkerboard pattern in thickness error.

2(b): checkerboard pattern in thickness error vanishes.

Observed by B.
Lipscomb at CESM Annual Meeting 2014.

Collaborators: S. Price,
W. Lipscomb, M.

Hoffman (LANL)

Appendix: Calculation of Surface Height Gradients in CISM-Albany

- In the FEM there are several ways to calculate ∇s for RHS in FO Stokes in each element e :

New to CISM-Albany (not available in MPAS-Albany)

1. $\nabla s^{e}=\sum_{i=1}^{\# \text { nodes }} s_{i}^{e} \nabla \phi_{i}{ }^{e}$,

s passed to Albany from CISM
2. $\nabla s^{e}=\sum_{i=1}^{\# \text { nodes }} \nabla$ sie ϕ_{i}^{e}

∇s passed to Albany from CISM
$\phi_{i}{ }^{e}=$ finite element shape functions $s_{i}{ }^{e}=$ values of s at node i of element e

2(a): Vsie calculated using central difference 2(b): Vsie calculated using forward difference

2(b).

Halfar test case ($\mathbf{t}=100$ years)

1 and 2(a): checkerboard pattern in thickness error.

2(b): checkerboard pattern in thickness error vanishes.

Observed by B.
Lipscomb at CESM Annual Meeting 2014.

Appendix: Bayesian Inversion/UQ

Difficulty in UQ: "Curse of Dimensionality" The β-field inversion problem has $O(20,000)$ dimensions!

- Step 1: Model reduction (from $O(20,000)$ parameters to O(5) parameters) using Karhunen-Loeve Expansion (or eigenvectors of Hessian, in future) of basal sliding field:

$$
\log (\beta(\omega))=\bar{\beta}+\sum_{k=1}^{K} \sqrt{\lambda_{k}} \boldsymbol{\phi}_{k} \xi_{k}(\omega)
$$

- Step 2: Polynomial Chaos Expansion (PCE) emulator for mismatch over surface velocity discrepancy.
- Step 3: Markov Chain Monte Carlo (MCMC) calibration using PCE emulator.

With:
J. Jakeman, M. Eldred (SNL)

Posterior Distributions of 1st 2 KLE coefficients

