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Sandia’s Role in the PISCEES Project: 
Albany/FELIX, CISM-Albany, MPAS-Albany 

PISCEES = “Predicting Climate and Evolution at Extreme Scales”                                        
(SciDAC application partnership b/w DOE’s BER + ASCR Divisions, began June 2012, 5 years). 

• Sandia’s Role in PISCEES: to develop and support a production-ready robust & scalable 
unstructured grid finite element land ice dycore based on the “first-order” (FO) Stokes physics. 

Albany/FELIX 
(Part I of talk) 

CISM-Albany and MPAS-Albany 
(Part II of talk) 

Steady state finite element 
solver for momentum 

balance (FO Stokes PDEs) 

Dynamic solver for ice sheet evolution PDEs 
(thickness & temperature advection-diffusion PDEs) 

Implemented in a Sandia (open-source) parallel C++ 
component-based FE code: 

Solvers,  preconditioners, 
automatic differentiation, FE 
library, performance-portable 

kernels, meshes, … 

Parameter estimation, 
UQ, optimization, 

Bayesian inference. 

Implemented by writing interfaces 
b/w Albany and CISM/MPAS codes 

[Computational 
Science Flavor] 

[Climate Science/ 
Applied Flavor] 

Production code for long-term use in ACME. 

Albany/FELIX (steady): 
FO Stokes PDEs 

(stress-velocity solve) 

CISM/MPAS (dynamic): 
ice sheet evolution PDEs 

(thickness/temp. evolution) 
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Glimmer/CISM 

Recap of 2012-14 Progress 

Use of Trilinos components has enabled rapid development of Albany/FELIX! 
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2012 2013 2014 

• Implement FO Stokes PDEs 
and relevant BCs in Albany 
code → Albany/ FELIX solver is 
born.  

 

• Verify Albany/FELIX on MMS 
and canonical benchmark 
problems. 

 

• Preliminary performance 
(robustness and scalability) 
studies. 
 

• Import GIS/AIS data (𝛽, 
temperature,…) into 
Albany/FELIX in various 
mesh formats (structured 
hex & tet, unstructured). 

 

• Couple Albany/FELIX to 
MPAS and CISM codes.  

 

• Convergence/performance 
studies on GIS. 

 

• Deterministic inversion for 
initialization (in LifeV). 

 

• Bayesian calibration for 
initialization. 

 

• Implementation of adjoints for 
deterministic inversion in Albany. 

 

• Scalability studies on large-scale 
GIS and AIS problems. 

 

• Performance portability in 
Albany/FELIX MiniApp. 

 

• Continued maturation of CISM-
Albany and MPAS-Albany. 

 

• GMD, ICCS, SISC papers 
submitted/in progress. 
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• PDEs: first-order (FO) Stokes PDEs with Glen’s law viscosity. 
 

• BCs: stress-free, basal, floating ice, kinematic. 
 

• Discretization: unstructured grid finite element method (FEM). 
 

• Meshes: structured hex, structured tet, unstructured tet. 
 
 

• Nonlinear solver: full Newton with analytic (automatic 
differentiation) derivatives and homotopy continuation.  

 

• Iterative linear solver: CG or GMRES with ILU or AMG 
preconditioner. 

 

• Advanced analysis capabilities: sensitivities, UQ, responses,    
adjoint-based optimization. 

Part I: The Albany/FELIX  
First Order (FO) Stokes Solver 
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Highlights of Recent Work:  
 

• Built-in adjoints for inversion. 
• AIS scaling studies (CG vs. GMRES, ILU vs. new 

AMG preconditioner aggressive semi-coarsening). 
• Performance-portable kernels. 



Implementation of Adjoints in  
Albany/FELIX for Deterministic Inversion  
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Surface Velocity magnitude (m/yr) 

target computed 

Recovered basal friction 
(KPa yr/m) 

700K parameters 
Software details: 
• Adjoints and derivatives w.r.t. parameters are computed using 

automatic differentiation (Sacado). 
• Reduced gradient based optimization performed using ROL 

(Rapid Optimization Library, part of Trilinos). 
• Optimization Algorithm: Limited-Memory BFGS 

Geometry and fields:  
(Conford, Martin, et al, in prep.) 
BEDMAP2 (Fretwell et al. 2013) 
Temperature (Pattyn, 2010) 

Objective Functional* to be minimized: 

Subject to: FO Stokes PDEs. 

 Collaborators: E. Phipps, D. Ridzal, D. Kouri (SNL) 

*Perego, Price, Stadler, JGR, 2014 

Courtesy of: M. Perego (SNL) 

2-8 km unstructured tet mesh, 10 layers 



Albany/FELIX Glimmer/CISM 

Albany/FELIX Weak Scaling on a  
 Moderate-Resolution AIS Problem 

Collaborators: R. Tuminaro (SNL) 

• Weak scaling study on AIS problem (8km w/ 5 layers → 2km with 20 layers). 
 

• Initialized with realistic basal friction (from deterministic inversion) and 
temperature field from BEDMAP2 (thanks to D. Martin!) 

 

• Iterative linear solver: GMRES. 
 

• Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening 
(Kalashnikova et al GMD 2014, Kalashnikova et al ICCS 2015,                    
Tuminaro et al SISC 2015). 

16 
cores  

1024 
cores  # cores 

 

16 
cores  

1024 
cores  # cores 

 

ILU AMG 
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AMG 
preconditioner  

AMG preconditioner less sensitive 
than ILU to ill-conditioning. 

Severe ill-conditioning 
caused by ice shelves! 

(vertical > horizontal 
coupling)  

+  
Neumann BCs  

=  
nearly singular 

submatrix associated 
with vertical lines GMRES less sensitive than CG to rounding errors from 

ill-conditioning [also minimizes different norm]. 



We need to be able to run Albany/FELIX on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) . 

• Kokkos: Trilinos library that provides 
performance portability across 
diverse devises with different 
memory models. 

 

• With Kokkos, you write an algorithm 
once, and just change a template 
parameter to get the optimal data 
layout for your hardware. 

 

• Work in progress: converting Albany 
to use Kokkos kernels 

 

• Albany/FELIX MiniApp for FE 
Assembly using Kokkos. 

• Albany branch based on Tpetra 
released Oct. 2014 on github.    Collaborator: I. Demeshko (SNL) 

Performance-Portability of 
Albany/FELIX 
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Albany/FELIX MiniApp 20km GIS 



Part II: CISM-Albany & MPAS-Albany 
Interfaces 

Albany/FELIX (C++) 
velocity solve 

CISM (Fortran) 
Thickness evolution,  
temperature solve, 
coupling to CESM 

simple_glide 

C++/Fortran 
Interface, Mesh 

Conversion 

MPAS Land-Ice 
(Fortran) 

Thickness evolution,   
temperature solve,  

coupling to DOE-ESM 

C++/Fortran 
Interface, Mesh 

Conversion 

LandIce_model 

CISM-
Albany 

MPAS-
Albany 

Structured hex meshes 
(rectangles extruded to 

hexes). 

Tet meshes (dual of 
hexaganonal mesh,  
extruded to tets). 

• Both available on github. 
• Both use forward Euler time-stepping*. 
• Same BCs available (free-surface, basal friction, floating ice, kinematic Dirichlet) in CISM-

Albany and MPAS-Albany.  

Production codes for long-term use in ESMs through ACME project! 
10 

(I. Kalashnikova) (M. Perego,  
M. Hoffman) 

[cmake] [Makefile] 

*Some differences in evolution schemes: FV upwinding, flux-corrected transport for MPAS, incremental remap for CISM. 



Albany/FELIX 

New BCs : Floating Ice (CISM-Albany) and 
Kinematic Lateral (CISM-,MPAS-Albany) 

• Floating ice lateral BCs (for ice shelves): assumes ice is in hydrostatic equilibrium 
with water/air around it. 

 

• Kinematic lateral BCs: values of ice velocities are specified on lateral boundaries. 

Lateral boundaries 
identified in CISM/MPAS, 

data passed to Albany. 

Ross Circular-Shelf  

11 
Collaborators: M. Perego (SNL); S. Price,  

W. Lipscomb, M. Hoffman (LANL) 

CISM-Albany 

Glissade 

MPAS-Albany 

CISM-Albany 

Glissade 



Progress Towards Transient  
Simulations in CISM-, MPAS-Albany 

Collaborators: M. Perego (SNL), 
S. Price, M. Hoffman (LANL) 
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CISM-Albany MPAS-Albany 

Variable 𝛽 field X X 

Temperature-based flow factor X X 

Upstream 𝛻𝑠 calculation X 

Floating ice BCs X X 

Kinematic lateral BCs X X 

Upwinding* X X 

Incremental Remap* X 

Flux-Corrected Transport* X 

New since 
CESM Annual 

Meeting 

Coming soon 

Needs further 
testing 

𝑡 = 0 𝑡 = 100 

Above: 100 year 4 km GIS 
transient simulation using 
CISM-Albany converged on 

Hopper out-of-the box! 

Other planned future work on evolution solvers 
(MPAS/CISM):  
 

• Circumventing CFL restrictions for explicit 
advection schemes. 

 

• RK-4 time-integrator for MPAS-LI. 

*In MPAS/CISM. 



Progress Towards Transient  
Simulations in CISM-, MPAS-Albany 

Collaborators: M. Perego (SNL), 
S. Price, M. Hoffman (LANL) 
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𝑡 = 0 𝑡 = 100 

Above: 100 year 4 km GIS 
transient simulation using 
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AIS transient simulations 
run too as of last week! 

Other planned future work on evolution solvers 
(MPAS/CISM):  
 

• Circumventing CFL restrictions for explicit 
advection schemes. 

 

• RK-4 time-integrator for MPAS-LI. 

*In MPAS/CISM. 



Ongoing/future work: 
 

• Dynamic simulations of ice evolution for GIS & AIS problems.  
 

• Deterministic inversion/calibration using new adjoint capabilities in Albany/FELIX. 
 

• Bayesian inference/UQ. 
 

• Porting to hybrid/new architecture machines. 
 

• GMD, ICCS, SISC papers in review/preparation. 
 
 

• Delivering code to users in climate community through coupling to ESMs.  

Summary and Future Work 

Summary:  
 

• Continued maturing and ripening of Albany/FELIX (scalability, verification, adjoints, 
performance portability). 

 

• CISM-Albany and MPAS-Albany are ready for science runs. 
 

• Use of Trilinos components results in code with dozens of built in advanced analysis 
capabilities (sensitivity analysis, responses, UQ, …) 
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Progress has been made towards release of a production 
code supported for long-term use in ACME. 
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Appendix: Code Verification and 
Performance 

γ=10-1.0 

γ=10-2.5 

γ=10-6.0 γ=10-10 

γ=10-10 

γ=10-10 

• Implementation of PDEs + BCs (no-slip, stress-free, 
basal sliding, open-ocean) has been verified 
through MMS tests (right) and code-to-code 
comparisons (confined-shelf, below). 
 

• Robust nonlinear solves (Newton converges 
out-of-the-box!) with homotopy continuation 
of 𝛾 in Glen’s law viscosity:  
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• Weak scaling study with fixed 
dataset, 4 mesh bisections. 

 

• ~70-80K dofs/core. 
 

• Conjugate Gradient (CG) 
iterative method for linear solves 
(faster convergence than 
GMRES). 

 

• New algebraic multigrid 
preconditioner (ML) developed 
by R. Tuminaro based on semi-
coarsening (coarsening in 𝑧-
direction only).   

 

• Significant improvement in 
scalability with new ML 
preconditioner over ILU 
preconditioner!  
 

4 cores 
334K dofs 
8 km GIS,  

5 vertical layers 

16,384 cores 
1.12B dofs(!) 
0.5 km GIS,  

80 vertical layers 

Appendix: Albany/FELIX GIS  
Controlled Weak Scaling Study 

New ML preconditioner 

× 84  
scale up 

In collaboration with:  
R. Tuminaro (SNL) 
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Albany/FELIX Glimmer/CISM 

Appendix: Albany/FELIX Strong Scaling  
On a Fine-Resolution GIS Problem 

• Strong scaling study on 1km GIS with 40 vertical layers (143M dofs, hex elements). 
 

• Initialized with realistic basal friction (from deterministic inversion) and 
temperature fields → interpolated from coarser to fine mesh. 

 

• Iterative linear solver: CG. 
 

• Preconditioner: ILU vs. new AMG (based on aggressive semi-coarsening). 

Collaborators: R. Tuminaro (SNL) 

ILU preconditioner scales better than AMG but ILU-preconditioned solve is slightly slower 
(see ICCS 2015 paper [4]). 

ILU AMG 

1024 
cores  

16,384 
cores  # cores 

 

1024 
cores  

16,384 
cores  # cores 
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Albany/FELIX 

Appendix: Calculation of Surface  
Height Gradients in CISM-Albany  

 

• In the FEM there are several ways to calculate 𝛻𝑠 for RHS in FO Stokes in each element  𝑒: 
 

 
𝛻𝑠𝑒 =  𝑠𝑖

𝑒𝛻𝜙𝑖
𝑒# 𝑛𝑜𝑑𝑒𝑠

𝑖=1 , 2. 1. 𝛻𝑠𝑒 =  𝛻𝑠𝑖𝑒𝜙𝑖
𝑒# 𝑛𝑜𝑑𝑒𝑠

𝑖=1 , 𝜙𝑖
𝑒 =finite element shape functions 

𝑠𝑖
𝑒 = values of 𝑠 at node 𝑖 of element 𝑒 

𝑠 passed to Albany 
from CISM 

𝛻𝑠 passed to Albany 
from CISM 

2(a): 𝛻𝑠𝑖𝑒 calculated using central difference 
2(b): 𝛻𝑠𝑖𝑒 calculated using forward difference 

New to CISM-Albany (not available in MPAS-Albany) 

Collaborators: S. Price,  
W. Lipscomb, M. 
Hoffman (LANL) 

1 and 2(a): checkerboard 
pattern in thickness error. 

2(b): checkerboard pattern 
in thickness error vanishes. 

Observed by B. 
Lipscomb at CESM 

Annual Meeting 2014. 

Modeled thickness Analytic thickness Modeled - Analytic thickness 

Halfar test case (t = 100 years) 
21 1. 



Albany/FELIX 
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2(b): checkerboard pattern 
in thickness error vanishes. 

Observed by B. 
Lipscomb at CESM 

Annual Meeting 2014. 

Modeled thickness Analytic thickness Modeled - Analytic thickness 

Halfar test case (t = 100 years) 
22 1. 2(a). 
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Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(20,000) dimensions!  

• Step 1: Model reduction (from 𝑂(20,000) parameters to 
𝑂(5) parameters) using Karhunen-Loeve Expansion (or 
eigenvectors of Hessian, in future) of basal sliding field: 

𝑙𝑜𝑔 𝛽 𝜔 = 𝛽 + 𝜆𝑘𝝓𝑘𝜉𝑘(𝜔)

𝐾

𝑘=1

 

 
• Step 2: Polynomial Chaos Expansion (PCE) emulator for 

mismatch over surface velocity discrepancy. 
 

• Step 3: Markov Chain Monte Carlo (MCMC) 
calibration using PCE emulator. 

 

Deterministic 𝛽 field 

Bayesian 𝛽 field 

Posterior Distributions of 1st 2 KLE coefficients 

Mode 1 Mode 2 

Appendix: Bayesian Inversion/UQ 

With:  
J. Jakeman,  

M. Eldred (SNL) 


