The Greenland Firn Aquifer: Discovering englacial water storage and motion

Lora S. Koenig¹, Clément Miège², Richard R. Forster² and Ludovic Brucker³

¹NSIDC, University of Colorado ²University of Utah ³NASA GSFC, Universities Space Research Association

February 2, 2015

2011 Aquifer Observed and Modeled

- First discovered 2011 ACT11-A2 core 1559 m
- Modeled Area: 70 ± 10 x 10³ km²
- Water persists through the winter
- Mapped with OIB radar

2

Firn aquifer mapped for three OIB campaigns (2011-2013)

Firn aquifer related to high accumulation regions

Firn aquifer found in:

- High accumulation areas
- Sufficient melt rates

Melt days for May-Aug 2007 from SSM/I (Van Angelen et al., 2012)

Accumulation Radar on board of NASA Operation IceBridge P-3

Clément Miège

Geography Dept.

UNIVERSI Of Utah

Fieldwork in April 2013

Drills provided by IDDO

Electrothermal drill (for wet firn & OC ice)

Aquifer Borehole Video

Stable water table at 12.2 m \pm 0.1, water filled bore hole

Drilling into the firn aquifer

Piping

Water Percolating/Sloshing in Core

Density Comparison

Water table is 24.7 m thick

Exponential Fit

Modified HL Fit

Koenig et al, 2014 Hörhold et al. 2011; Herron and Langway, 1980

Estimating Volume

Assumptions:

- Porosity determined by closest seasonal dry firn core (ACT11B)
- Area of Aquifer: $70 \pm 10 \times 10^3 \text{ km}^2$
- Density of water: 134 kg/m³
- Bottom constant : 37 m
- Thickness: 2-σ range of 0 to 28 m, mean 14 m

Forster et al., 2014 Koenig et al., 2014 Firn Aquifer Volume: 980 ± 140 km³

Stored Water: 140 ± 20 Gt or ~0.4 mm of SLR

1-D temperature study: Progressive Summer warming

Slow progress of the wetting front from the surface

Dates:

Surface melt onset: June 12 Firn column at 0°C: July 31 Surface < 0°C : Aug 14

Temperature evolution between April 2013 – April 2014

*Note that the sensor depth is valid for April 2013 and the new snowfall added during the winter are not taken into account here.

Influence of the ice-sheet surface undulations

Water table follows the topography in an unconfined system

Firn aquifer connection with crevasses

Crevasses observed

- High-res images
- **Radar profiles**
- Marks the end of the aquifer.

Drainage of water is suspected but further investigation is needed to quantify runoff volume and fate of the liquid water

OF UTAH

Clément Miège

Geography Dept.

Evolution of the firn aquifer for the upper part of Helheim Gl.

Storage Capacity

Site measured is filled to 50% capacity Aquifer regions can store 8.9 % more mass than refreezing

Koenig et al., 2014 Harper et al. 2012

Firn aquifer in the vicinity of Helheim Glacier

Field work location for April – May 2015

Aquifer estimated at ~140 Gt of water, ~0.4 mm of SLR

Two end member hypothesis for Aquifer discharge need further investigation:

- 1) Stored water connected to a well established englacial hydrologic system (seasonally discharging).
- 2) Stored water fills over long time scales and then drains catastrophically.

Likely both contribute and more work /measurements are needed to further constrain this new glacier facies

Acknowledgements:

Susan Zager and the PFS team and J. Kayne and the IDDO team for drilling support. NSF grant #1311655 and the NASA Cryospheric Sciences, NIP and ESS programs.