Recent results and products from remote sensing of ice sheet velocities

Twila Moon^{1,2}, Ian Joughin², Ben Smith², Michiel van den Broeke³, Willem Jan van de Berg³, Brice Noël³, Mika Usher²

Ted Scambos¹, Mark Fahnestock⁴, Marin Klinger¹, Terry Haran¹, Tom Milliman⁵

¹ National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder

² Polar Science Center, Applied Physics Lab, University of Washington

³ Institute for Marine and Atmospheric Research, Utrecht University

- ⁴ Geophysical Institute, University of Alaska, Fairbanks
- ⁵ Institute for the Study of Earth, Oceans, and Space, University of New Hampshire

55 study glaciers: Marine-terminating, fast-flowing

Study period: 2009-2013

 Runoff data:
 Terminus data:

 RACMO2.3
 Landsat 7 and 8

 TerraSAR-X
 V

<u>Velocity data:</u> TerraSAR-X InSAR & speckle tracking

Distinct patterns of seasonal Greenland glacier velocity -- Moon et al. (2014), GRL

- 1. Terminus retreat with reverse slope bed
- 2. Increase in basal water pressure

[Creyts and Clarke, 2010]

Type 1: Sustained summer speedup

Type 2: Distributed network

Type 2: Distributed network

Velocity is determined by runoff *without* distributed—channelized switch.

Type 3: Channelized drainage evolves

Type 3: Channelized drainage evolves

A closer look at seasonal velocity patterns

- 2010 & 2012 response: 5 glaciers
- 2012 response: 7 glaciers
- Regional distribution of seasonal terminus behavior suggests that supraglacial or englacial water storage may be important.
- Initial look consistent with alongglacier evolution of hydrology system.

Measuring broad-area surface velocity with Landsat 8

Excellent spatial and temporal coverage

Southeast Alaska (March 2014)

- Taking advantage of Landsat 8's improved radiometric resolution and geolocation accuracy
- Creating both annual mosaics and seasonal scale time series
- Fast processing speed for near real time measurements

Pairing Landsat 7 and Landsat 8

Forthcoming MEAsUREs dataset for ice front position

Seasonal velocity patterns:

- High sensitivity to seasonal terminus behavior for some glaciers, but more glaciers respond primarily to changes in the hydrologic system

- Signature velocity patterns for glaciers with distributed- channelized switch and glaciers without distributed--channelized
 switch
- Hydrologic link has dynamic implications for annual melt, supra/englacial water storage, along-glacier evolution of hydrology
- Glacier and ice sheets surface velocities from Landsat 8
- Forthcoming MEAsUREs dataset for annual terminus positions for Greenland

Type 2: Summer spike

Type 3: Late summer deceleration

Record Greenland surface melt: 2010 & 2012

