REVISITING TIDAL MIXING PARAMETERIZATIONS IN POP2

(work in progress)

Gokhan Danabasoglu & Nancy Norton NCAR

Andreas Schmittner & David Ullman Oregon State University

As part of our CPT on Internal Wave Mixing activities:

- Incorporating new developments in tidal mixing parameterizations,
- Assessing their impacts on ocean and climate model solutions.

Climate Process Team on Internal Wave Mixing

Existing Formulation in POP2 [based on Jayne & St. Laurent (2001, GRL); St. Laurent et al. (2002, GRL); Simmons et al. (2004, Ocean Modelling)]

Vertical diffusivity due to background and tidal mixing:

$$k_v = k_{\rm bg} + \frac{\Gamma\varepsilon}{N^2}$$

where N: buoyancy frequency,

Γ (=0.2): canonical mixing efficiency of turbulence.

$$\varepsilon = \frac{q E(x, y) F(z, H)}{\rho}$$

where q (=1/3): local dissipation efficiency,

ρ: density,

E: energy flux out of the barotropic tide,

F: vertical distribution (decay) function

$$F(z, H) = \frac{e^{-(H-z)/\zeta}}{\zeta(1 - e^{-H/\zeta})} \quad \text{with } \zeta = 500 \text{ m}$$

Modifications

We consider three modifications based on Schmittner & Egbert (2014, GMD). They are ...

- A new energy flux field from the barotropic tide from Egbert & Ray (2003, GRL),
- Consideration of subgrid-scale bathymetry in the energy flux field,
- Separation of semi-diurnal and diurnal tides with different local dissipation efficiency.

Total Energy Flux from the Barotropic Tide

Estimated from assimilation of satellite altimetry data into a hydrodynamic model; 4 tidal constituents Estimated using a barotropic tide model with parameterized internal wave drag; 8 tidal constituents

JS01: Jayne & St. Laurent (2001, GRL) ER03: Egbert & Ray (2003, GRL)

Schmittner & Egbert (2014, GMD)

Subgrid-Scale Bathymetry An example using the Aleutian Islands chain

Energy flux from the K1 barotropic tide (10⁻³ W m⁻²)

Schmittner & Egbert (2014, GMD)

Tidal Constituents (TCs)

Four TCs:

- Semi-diurnal lunar and solar tides, M2 and S2, respectively, with q = 1/3,
- Diurnal tides K1 and O1 with q = 1 polewards of 30° latitude

$$\varepsilon = \frac{1}{\rho} \sum_{z'>z}^{H} \sum_{\text{TC}} q_{\text{TC}} E_{\text{TC}}(x, y, z') F(z, z')$$

Regularization of Tidal Diffusivities

$$k_v = k_{\rm bg} + \frac{\Gamma\varepsilon}{N^2}$$

- Limit minimum value of N², e.g., 10⁻⁸ s⁻²
- Limit k_v using $k_v = \min(k_v, k_{max})$, e.g., $k_{max} = 100 \text{ cm}^2 \text{ s}^{-1}$
- Limit both

Model Simulations

- Ocean sea-ice coupled simulations (G compset) forced with the Coordinated Ocean – ice Reference Experiments inter-annually varying atmospheric data sets (aka, CORE-II simulations);
- 310-year experiments corresponding to five repeat cycles of the 1948-2009 forcing period;
- Time series and 1990-2009 mean fields.

Case name	2D vs. 3D	Energy Field	limit on k _v (cm ² s ⁻¹)
2DJ100	2D	JS01	100
2DE100	2D	ER03	100
3DE100	3D	ER03	100

Tidal + Background Vertical Diffusivity

k_v at 3500 m depth

Horizonal-Mean Potential Temperature Model – Observation Differences (Global)

Global and Atlantic Meridional Overturning Streamfunction

3DE100

2DE100

2DJ100

Mixed Layer depth

Sensitivity Experiments

Case name	2D vs. 3D	Energy Field	limit on k _v (cm² s⁻¹)
2DJ100	2D	JS01	100
2DE100	2D	ER03	100
3DE100	3D	ER03	100
2DJ10	2D	JS01	10
2DE50	2D	ER03	50
2DE10	2D	ER03	10
2DE5	2D	ER03	5
3DE10	3D	ER03	10

Distribution of k_{ν} (as % of grid points)

Global and Atlantic Meridional Overturning Streamfunction

2DE10

2DE100

2DJ100

Mixed Layer depth

Zonal-Mean Ideal Age (yr)

2DE100

2DE10 – 2DJ100

Summary

- Work in progress
- Very uncomfortable sensitivities to regularization
- More detailed assessment to come

Other related work:

- Infrastructure to use time varying tidal forcing, e.g., Lunar Nodal Cycle of 18.6 years
- Alternative tidal dissipation energy fields, e.g., Green & Nycander (2013), Arbic et al. (2015+)
- Alternative vertical decay function, i.e., Polzin (2009) via Melet et al. (2013)

Horizonal-Mean Potential Temperature Model – Observation Differences

Horizonal-Mean Potential Temperature Model – Observation Differences

Horizonal-Mean Potential Temperature Model – Observation Differences (Global)

POTENTIAL TEMPERATURE (°C) (MODEL - OBS)