

Do ocean reanalysis products agree on the historical representation of the AMOC?

Alicia R. Karspeck Detlef Stammer, Gokhan Danabasoglu

Thanks to Magdalena Balmaseda, Doug Smith ,Tony Rosati, Shaoquing Zhang, Armin Köhl, Keith Haines, Maria Valdivieso, Yosuke Fujii , Ben Giese for making AMOC data available Why do we care about historical AMOC variability in ocean reanalysis products?

Process understanding

- The AMOC state upon initialization is thought to play an important role in decadal-scale climate prediction in the North Atlantic. (Robson et al 2012; Yeager et al 2012, Matei et al 2012; Msadek et al 2014)
 - Retrospective prediction experiments are used to evaluate the performance of prediction systems.
 - Ocean reanalysis products are used to initialize retrospective predictions

Atlantic Meridional Overturning Circulation

Groups that have contributed AMOC reanalyses

GROUP	METHOD	INSITU T/S	ALT	SST	NoAssim Control run?	Atm forcing	DP INIT?
GECCO2 (U. Hamburg)	4DVAR	YES	YES	YES	YES	NCEP	YES
ORAS4 (ECMWF)	NEMOVAR 3DVar	YES	YES	YES	YES	ERA- 40/ERA-I	YES
MOVE-CORE (MRI)	3DVar	YES	YES	NO	YES	CORE II IAF	YES
SODA (U.MaryInd/T AMU)	OI	YES	NO	YES	YES	20-CR	YES
DePreSys (UKMET)	Coupled nudging to OI product	YES	NO	YES	NO	N/A	YES
ECDA3.2 (GFDL)	coupled EaKF	YES	INDIRECTLY	YES	NO	N/A	YES

Reanalyses set

6 different models, forcing datasets, spinups ALL constrained by ocean data

No Assimilation

4 different models, forcing datasets, spinups

20 different models, identical CORE-IAF forcing, identical spinup procedures

Comparison to RAPID estimates @ 26.5N

REANALYSES

FORCED OCEAN/ NO ASSIMILATION

AMOC Time Mean

AMOC Variability

Data constraints increase variability, especially at lower-latitudes

AMOC Trend (1960-2007)

Agreement in year-to year signal?

Data constraints reduce year-to-year consistency

A-NOASSIM (11.9,11.1) [-0.1,-0.2]

Summary

- Ocean data constraints tend to increase mean AMOC strength (closer to RAPID observations)
- Ocean data constraints tend to increase trends and variability strength but..
- AMOC variability/trends are *less* consistent within ocean reanalysis products than in forced-ocean runs.

Are the <u>current generation</u> of reanalysis products useful to inform our understanding of AMOC variability and initialize decadal predictions?

Can they be used indiscriminately?

End

The geostrophic shear @ 41N

$$\Psi_{total} \approx \Psi_{Ekman} + \Psi_{shelf} + \Psi_{geostrophic}$$

$$\Psi_{geostrophic} = \int_{-H}^{0} \overline{v}_{g}^{x} dz$$

$$= \int_{-H}^{0} \frac{g}{f\rho_{o}} \int_{-H}^{z} \rho_{w}(z') - \rho_{e}(z') dz' dz + H\overline{v}_{-H}^{x}$$

$$\rho_{w} = f(T_{w}, S_{w})$$

= $f(\overline{T_{w}} + T'_{w}, \overline{S_{w}} + S'_{w})$
$$\rho_{e} = f(T_{e}, S_{e})$$

= $f(\overline{T_{e}} + T'_{e}, \overline{S_{e}} + S'_{e})$

Is the salinity at the eastern/western boundary in agreement?

Trends in the geostrophic shear component of AMOC in the upper ocean are inconsistent

What do we know so far about why?

In a preliminary analysis at 41N we found disagreement that

- 1) whether density variations on the east or west boundary were dominating the trends
- 2) whether density variations were primarily driven by temperature or salinity.
- 3) temp/salinity variability on the boundaries, especially below 250m

model-model correlation

End

An overview of experimental reanalysis efforts at NCAR

Alicia R. Karspeck, Abhishek Chatterjee

Data assimilation key personnel: Jeff Anderson, Nancy Collins, Tim Hoar, Helen Kershaw, Kevin Raeder Climate modeling key personnel: Gokhan Danabasoglu, Joe Tribbia, Steve Yeager, Svetlana Karol

For Data Assi activ led by CGD	mal imilation vites) scientists	PC ex)P/CAM/ perime	'CESI ntal	M DART: climate	reana	lyses	
⁵ CESM-DA	ART_2 coupled (w/CAM5	o, POPDART	v2)	¹ CAM4-DA	ART (2° at accerning and accerning and accerning acc	m-only) an-only DART v2 -DART_1 co	oupled
1970	1980	-	1990	_	2000	-	2010	
¹ Kevin Ra ² Alicia Ka ³ Alicia Ka ⁴ Abhishe ⁵ Alicia Ka	aeder (DAReS-(arspeck (Ocear arspeck (Ocear k Chatterjee(C arspeck (Ocear	CISI) n-CGD) n-CGD) CGD/DA	ReS-CISL)	Ens	All metho implem semble Adju	ods use t entation ustment	he DART of the Kalman F	ilter

<u>Community</u> <u>Earth</u> <u>System</u> <u>Model</u>

** Greenhouse gases, manmade aerosols, volcanic eruptions, solar variability

<u>Community Earth System Model</u> "multi-instance"

** Greenhouse gases, manmade aerosols, volcanic eruptions, solar variability

Data Assimilation Research Testbed

DART is a generic ensemble filter; necessary ingredients:

- Model forecasts
 - In a coupled framework -- model state can be defined independently for each component or jointly across components.
- Forward operators to map from the model state vector to the observation space
- Observations

(http://www.image.ucar.edu/DAReS/DART)

Frameworks for data assimilation

Schematic courtesy of A. Chatterjee

Community Earth System Model interfacing with DART in a "single-component" DA uncoupled framework

Community Earth System Model interfacing with DART in a "multi-component" DA coupled framework

Summary info on the CESM-DART coupled assimilation system

- Model:CESM global coupled ocean/atm/ice/land
Horizontal resolution: nominal 1°
Vertical resolution: CAM5 30 levels (~2hPa)
POP 60 levels (10 m upper to ~250m deep)
- DA method: 30 member DART ensemble adjustment Kalman filter (EAKF)
- Ocean obs: In-situ temp and salinity (XBT, MBT, CTD, drifters, floats, moorings, ARGO floats, ocean station; **no SST**, **no altimetry**)
- Atm obs:temp and winds (radiosondes, aircraft, satellite drift
winds, GPSRO-COSMIC, ACARS; currently no moisture,
surface pressure, or radiometer retrievals)

Early results from the CESM-DART coupled assimilation

Generally high correlation with HADISST

1972-73 El Nino event simulated

Plots courtesy of S. Karol

Ski-hourly snapshot of SLP from CAM5

0° 60°E 120°E 180°W 120°W 60°W 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03

x 10

n^o

1.04

- Reasonable AMOC/variability (albeit with a drfit)
- Skill in 6 hourly forecast in atmosphere comparable to the stats published by NCEP
- Reasonable SST variability

Plans in the next 5 years:

- Complete coupled-model, multi-component assimilation
- Develop coupled-model cross-component assimilation (cross component covariances / increments)
- Software advances for speeding-up the assimilation
- Include altimetry in ocean assimilation
- Global ocean assimilation with eddy-resolving model
- Investigate the ways that coupled assimilation may be advantageous for state estimation and prediction

Ensemble/Group Average

Time-Mean AMOC

0

1

depth (km)

4

5

20[°]S

MRI-CORE

20[°]N

40[°]N

Ø

0°

