Anisotropic Mixing Mesoscale Parameterization

Scott J. Reckinger

Baylor Fox-Kemper

NCAR Ocean Model Working Group Meeting January 15th, 2014 Boulder, CO

Mesoscale Eddies

surface flow from observation data assimilation (NASA & MITgcm)

Eddies convert available potential every into kinetic energy:

energizes eddies, flattens isopycnal slopes, and mixes along isopycnals

Mesoscale Eddy Parameterization

Reynolds averaged tracer equation with closure:

Boulder, CO

Eddy Diffusivity Tensor

diffuses along isopycnals

$$\partial_t \phi + \vec{u} \cdot \nabla \phi = \nabla \cdot \left(\bar{\vec{K}} + \bar{\vec{A}} \right) \cdot \nabla \phi$$

0

2

4

0

x 10 Tracer x-z

BROWN

Ф

Ф

NCAR Ocean Model Working Group Meeting

January 15th, 2014 Boulder, CO

5

Boulder, CO

Anisotropy: Shear Dispersion

Anisotropic Eddy Transport Tensor

Boulder, CO

Mesoscale Eddy Parameterization

- Parameterizations
 currently use isotropic
 diffusivity *K*
- Extend for anisotropy*
 - Principal axis alignment
 - $\kappa_{\rm major}/\kappa_{\rm minor}$
- What will be gained?
 - Shear dispersion
 - PV-gradient suppression
 - Better ventilation of passive and biogeochemical tracers

*Fox-Kemper et $al_{0}(2013)$

NCAR Ocean Model Working Group Meeting January 15th, 2014

Boulder, CO

Anisotropic GM/Redi

 Model anisotropic transport mechanisms in the ocean through parameterizations of:

 κ

Drifter Observation Diffusivity Tensor

- Principal axis alignment
 - Major axis aligned zonally away from boundary currents
 - Major axis aligned with the flow near boundary currents
- $\kappa_{\rm major}/\kappa_{\rm minor}$
 - > 16 in tropical regions
 - Typical ratio is ≈ 5

*Fox-Kemper et al (2013) NCAR Ocean Model Working Group Meeting

January 15th, 2014 Boulder, CO

Summary of Numerical Experiments

Summary of Numerical Experiments

- Community Earth System Model (CESM1.2)
 - CORE 62-year interannual forcing (GIAF compset)*
 - 1° resolution (gx1v6 grid)
 - 5.75 cycle spin-up, branch for 5.25 cycles, and inject CFC's for final 1.25 cycles.

Discretization of the **Anisotropic Operator**

January 15th, 2014

Boulder, CO

- Requires 3D volume integration* \bullet
 - Terms with derivatives in all 3 dimensions, e.g. $\partial_{y} [K_{xy}S_{x}\partial_{z}\phi], \ \partial_{z} [K_{xy}S_{y}\partial_{x}\phi], \ \partial_{z} [K_{xy}S_{x}S_{y}\partial_{z}\phi]$
- Minor change to the treatment of transition layer physics**
- Sensitive to local variations in grid spacing
- Natural implementation of partial bottom cells

BROWN

NCAR Ocean Model Working Group Meeting ** Danabasoglu et al (2008)

**Ferrari et al (2008)

(ne)

Alignment – pCFC11 Bias

Alignment – T & S Bias

Diffusivity Ratio – pCFC11 Bias

Diffusivity Ratio – T & S Bias

T & S Bias at z=483m

BROWN

*CESM1 has one of the strongest AMOC among CORE-II simulations (Danabasoglu, 2014)

AMOC Anisotropy weakens* MOC

N² Isotropic

Ф

m

Ф

BROWN

AMOC - Control

*CESM1 has one of the strongest AMOC among CORE-II simulations (Danabasoglu, 2014)

N² Anisotropic Flow

AMOC - Anisotropic

Shear Dispersion Parameterization – Diffusivity Ratio Maps

-80

100

Early stage of parameterization development produces diffusivity ratio map similar to drifters

200

300

0.5

Conclusions and Future Work

- Mesoscale eddies anisotropically diffuse along and flatten isopycnals
- Anisotropic GM/Redi: control the eddy transport processes in a way that is justified theoretically, matches observations, and can be diagnosed from high resolution simulations
- Parameters: major diffusivity, minor diffusivity, & orientation
- Implemented and tested with PBCs
- Prognostic utilization of diagnosed diffusivity tensor consistently mixes too strongly
- Simple idea, $\kappa_{major}/\kappa_{minor}=5$, aligned with flow, improves biogeochemical tracer ventilation and reduces temperature and salinity biases
- Next step: parameterize anisotropic transport mechanisms (Shear dispersion – major enhancement, PV-barriers – minor suppression, etc.)
- Important factors not explored: background diffusivity, relationship between isotropic diffusivity and background diffusivity, near surface transition, etc.

16

scottreckinger.com fox-kemper.com

(6)

Diffusion and Sources of Anisotropy

Boulder, CO

Anisotropic Gent-McWilliams/Redi

- Generalize to anisotropic horizontal diffusion*
 - Symmetric horizontal diffusivity tensor (3 parameters)

 $\bar{\bar{K}}_H \bar{\xi}_i = \kappa_i \bar{\xi}_i$

- real eigenvalues => diffusivities (2)
- orthogonal eigenvectors => principal axes (1)

$$\bar{K}_{H} = \begin{pmatrix} K_{xx} & K_{xy} \\ K_{xy} & K_{yy} \end{pmatrix}$$

$$\bar{K} = \begin{pmatrix} \bar{K}_{H} & \bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & \bar{S} \cdot \bar{K}_{H} \cdot \bar{S} \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{A} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{K} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{K} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{K} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{K} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{K} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{K} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{K} = \begin{pmatrix} 0 & 0 & -\bar{K}_{H} \cdot \bar{S} \\ \bar{S} \cdot \bar{K}_{H} & 0 \end{pmatrix}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{S} = \text{isopycnal slope}$$

$$\bar{S} = \frac{1}{\bar{S} \cdot \bar{S} \cdot \bar{S} + \bar{S}$$

Current Timing

- Current Aniso-GM runs a factor of ~2 times slower than Iso-GM CESM1.2 outof-box
- Greatest cost to BGC, but this is where the most will be gained
- Minor speed reduction (~ 4-7 %) for GIAF compset runs with only 1 passive tracer (IAGE)

NCAR Ocean Model Working Group Meeting January 15th, 2014 Boulder, CO

Yet to be explored

- Minor suppression
- Background diffusivity
- Relationship between isotropic diffusivity and background diffusivity
- Near surface transition

NCAR Ocean Model Working Group Meeting January 15th, 2014 Boulder, CO