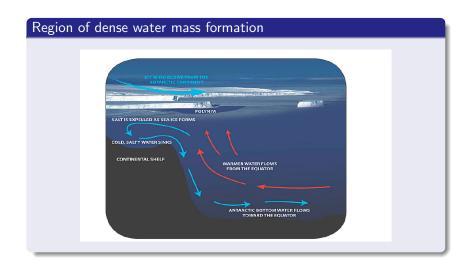
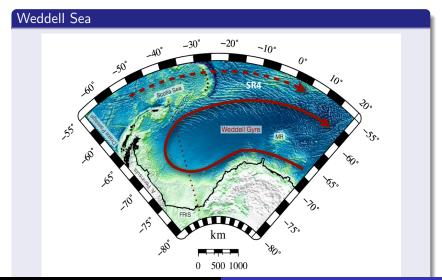
Motivation Weddell Sea Water Masses - CMIP5 Ocean Heat Content - CMIP5 Appendix: Description of methods

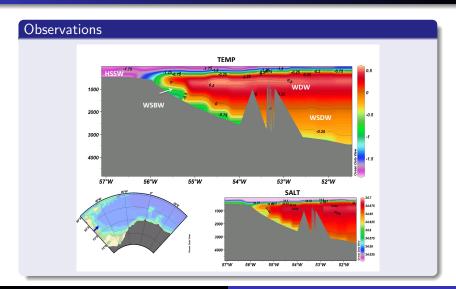

Warm Deep Water and OHC changes in the Weddell Sea - 20th and 21st C CMIP5 and Ocean-reanalysis

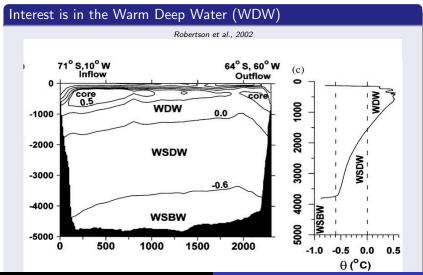
Ilana Wainer


Instituto Oceanográfico Universidade de São Paulo

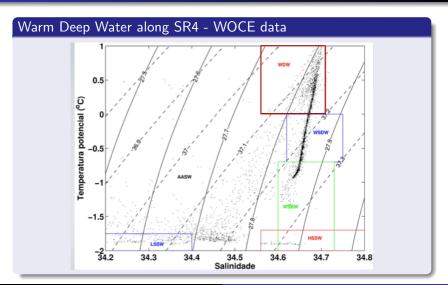
OMWG meeting 01-2015

Southern Ocean = large uncertainties in climate models


Focus on the Atlantic sector of the Southern Ocean

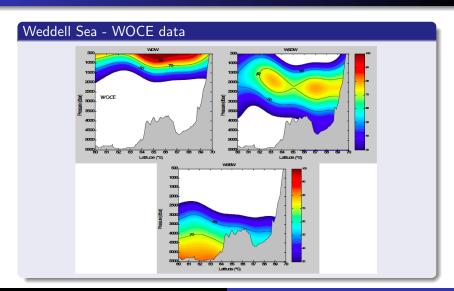


Southern Ocean


Climate Hotspot

- Source (and export) region for Antarctic Bottom Water (AABW);
- AABW becoming fresher and lighter (Schmidkto et al., 2014)
- Processes such as ice shelves desintegration; shelf Water Freshening (Van Wijk & Rintoul, 2014);
- We want to know how <u>Weddell Sea</u> water masses are represented in large-scale climate models.

Water masses are excellent indicators for climate change

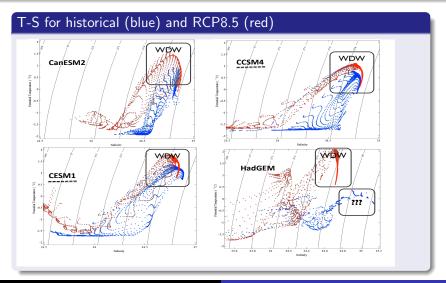


Evaluate the dense water masses in climate models.

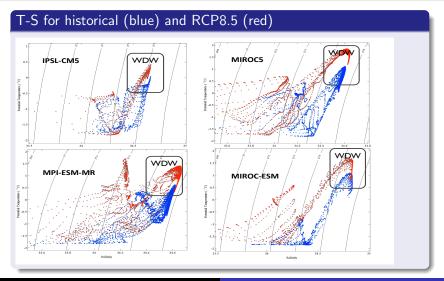
Separation of water masses using OMP (optimal multiparameter) method

- OMP is based on simple linear mixing, starting from observed values of water mass parameters.
- Determine the contributions (in percentage) from predefined source water types (SWT).

OMP results

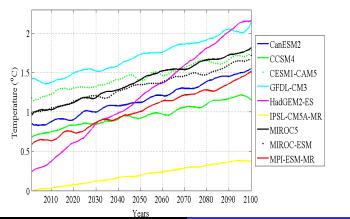


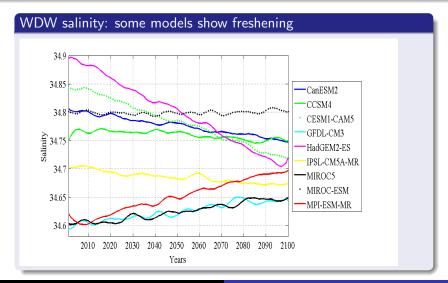
CMIP5 models intercomparison

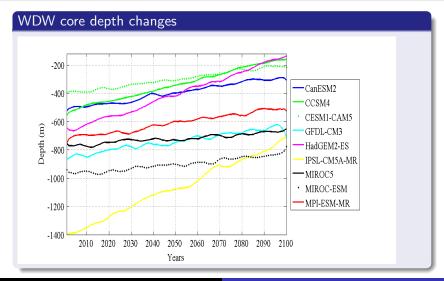

CanESM, CCSM4, CESM1-CAM5, GFDL-CM3, Hadgem2-ES, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MPI-ESM-MR

- Locate WDW highest percentage and track:
 - temperature changes
 - salinity changes
 - core depth changes

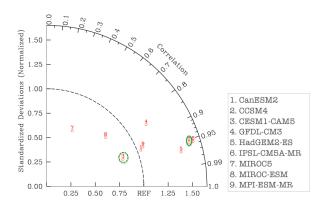
RESULTS: Weddell Sea Water Masses

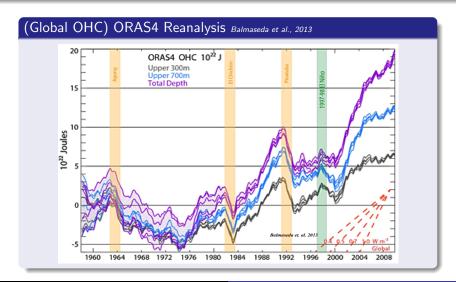



Weddell Sea Water Masses - RESULTS

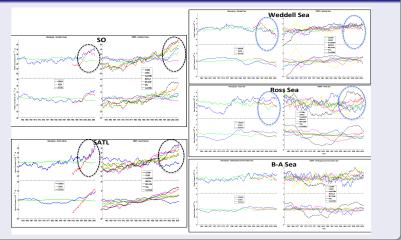


Weddell Sea Water Masses - RESULTS


All models show warming, however, their representation of the water masses is very different


How well are CMIP5 models doing w/r WDW core depth?

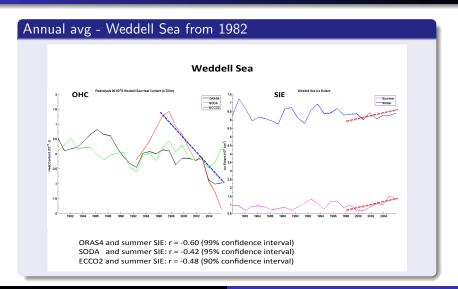
Changes in CMIP5 models - Conclusions


- all models show warming
- most models show freshening 0.2 decrease (max)
- all models show WDW core is moving up (less dense)
- note: GFDL and HadGEM poor WDW representation (historical)

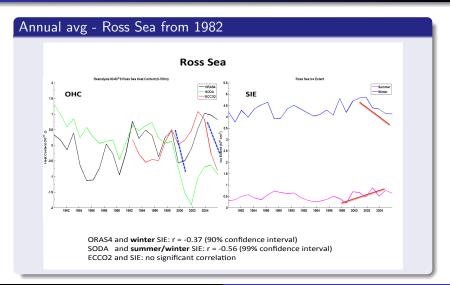
Ocean Heat Content

Time series of OHC

Reanalysis vs. CMIP5 for SO, SATL and Regional Seas



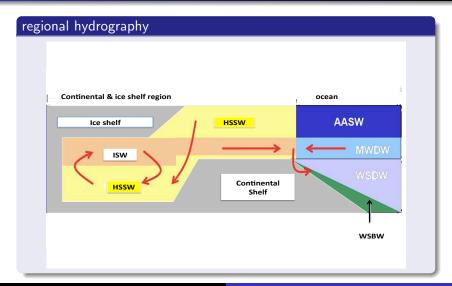
OHC trends


	Southern C	Ocean [W/m2]		South Atlantic [W/m2]			
	0-2000m	700-2000m		0-2000m	700-2000m		
ORAS4	1.23	0.03	ORAS4	0.42	0.07		
SODA	-0.17	-0.09	SODA	-0.01	-0.01		
ECCO2	7.54	1.95	ECCO2	2.69	1.32		
CCSM4	3.49	0.84	CCSM4	0.31	0.10		
CSIRO	0.73	0.26	CSIRO	0.33	0.14		
HadGEM2	0.69	0.17	HadGEM2	-0.21	-0.03		
MIROC5	2.93	1.00	MIROC5	0.53	0.23		
MPI-ESM	-0.17	-0.09	MPI-ESM	0.83	0.32		
IPSL	3.70	1.19	IPSL	0.73	0.34		
CanESM2	2.75	0.49	CanESM2	0.72	0.15		
Weddell [W/m2]			Ross [W/m2]		Bellingshausen-A		
0-2000m	700-2000n	n l	0.2000m 700.2000	m	0-2000m	700-9	

Weddell [W/m2]		Ross [W/m2]				Bellingshausen-A. [W/m2]		
	0-2000m	700-2000m		0-2000m	700-2000m		0-2000m	700-2000m
ORAS4	-0.20	-0.22	ORAS4	0.80	0.38	ORAS4	0.80	0.31
SODA	-0.00	-0.00	SODA	-0.25	-0.13	SODA	0.13	0.02
ECCO2	-1.47	-0.62	ECCO2	-0.69	-0.85	ECCO2	0.31	-0.2
CCSM4	0.24	0.14	CCSM4	0.30	0.05	CCSM4	0.54	0.06
CSIRO	0.30	0.15	CSIRO	-0.59	-0.27	CSIRO	0.01	-0.03
HadGEM2	0.46	0.31	HadGEM2	-0.25	-0.10	HadGEM2	-0.55	-0.33
MIROC5	-0.13	-0.28	MIROC5	-0.47	-0.36	MIROC5	1.23	0.36
MPI-ESM	0.13	0.03	MPI-ESM	-0.38	-0.40	MPI-ESM	-0.04	-0.22
IPSL	0.66	0.41	IPSL	0.31	0.06	IPSL	0.67	0.34
CanESM2	0.32	0.04	CanESM2	-0.27	-0.23	CanESM2	-0.10	-0.15

Is OHC and SIE correlated?

Correlation of reanalysis OHC and satellite SIE



What is the Bottom-line?

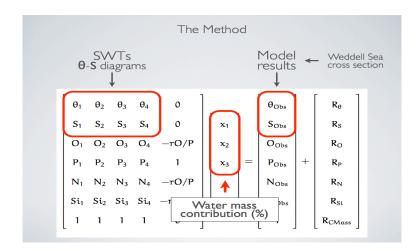
Southern Ocean is Warming

- Warming of the deep water in the Weddell Sea has important implications for AABW formation, melting of pack ice, and the regional ocean—atmosphere heat transfer.
- Negative OHC trend in ice formation regions (WS and Ross) not captured by Cmip5 - How to explain the negative trend, is it real?
- Models missing important processes?

Ice shelves?

Motivation
Weddell Sea Water Masses - CMIP5
Ocean Heat Content - CMIP5
Appendix: Description of methods

wainer@usp.br


Oceanography Institute of the University of São Paulo (IOUSP)

THANK YOU

OMP calculations

$$\begin{cases} x_1\theta_1 \ + \ x_2\theta_2 \ + \ x_3\theta_3 \ + \ x_4\theta_4 \ + \ 0 \ = \ \theta_{Obs} \ + \ R_\theta \\ x_1S_1 \ + \ x_2S_2 \ + \ x_3S_3 \ + \ x_4S_4 \ + \ 0 \ = \ S_{Obs} \ + \ R_S \\ x_1O_1 \ + \ x_2O_2 \ + \ x_3O_3 \ + \ x_4O_4 \ - \ \Delta O \ = \ O_{Obs} \ + \ R_O \\ x_1N_1 \ + \ x_2N_2 \ + \ x_3N_3 \ + \ x_4N_4 \ + \ \Delta N \ = \ N_{Obs} \ + \ R_N \\ x_1P_1 \ + \ x_2P_2 \ + \ x_3P_3 \ + \ x_4P_4 \ + \ \Delta P \ = \ P_{Obs} \ + \ R_P \\ x_1Si_1 \ + \ x_2Si_2 \ + \ x_3Si_3 \ + \ x_4Si_4 \ + \ \Delta Si \ = \ Si_{Obs} \ + \ R_{Si} \\ x_1 \ + \ x_2 \ + \ x_3 \ + \ x_4 \ + \ 0 \ = \ 1 \ + \ R_{CMass} \end{cases}$$

OMP calculations

OHC calculations

$$HC_m = \int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} \rho_0 c_\rho (T_m - T_c) dx dy dz$$
 (1)

- HC_m is the monthly Ocean Heat Content value;
- ρ_0 the average density;
- c_p the specific heat of water;
- T_m the temperature at a given point (x,y,z,t);
- T_c , the climatological temperature for the specific month.