

Computing Tensor Diffusivity from a Well-Resolved, Eddying Simulation

Phillip Wolfram, Todd Ringler, Mathew Maltrud, Doug Jacobsen, and Mark Petersen

Los Alamos National Laboratory

LA-UR-15-20179

Climate, Ocean and Sea-Ice Modeling Project

Motivation

Why tracer diffusivity [κ]?

- Fundamental property of ocean circulation (observational estimates in progress)
- Isopycnal mixing key to ventilation of important climate system tracers:
 - Dynamically active tracers (temp, salinity)
 - Chemical and biological tracers
- Driven by mesoscale (baroclinic eddies)

Outline

- 1. SOMA: Simulating Ocean Mesoscale Activity
- Computation of diffusivity via LIGHT: Lagrangian In-situ Global High-performance particle Tracking
- 3. SOMA Experimental design
- 4. SOMA Diffusivity
 - A. Spatial structure
 - B. Resolution dependence
 - C. Scales of mixing
- 5. Summary

"Diagnosing isopycnal diffusivity in an eddying, idealized mid-latitude ocean basin via Lagrangian In-situ, Global, High-performance particle Tracking (LIGHT)", *Journal of Physical Oceanography*, in review.

Dynamics of the SOMA wind-driven double gyre system

Los Alamos

SOMA: Rossby radius of deformation spectrum

MPAS-O: 4 km grid resolution

Relative vorticity at 100 m depth with one frame every 15 days.

movie here: https://www.dropbox.com/s/q2unhxi51rpz243/SOMA_4km.mov

Lagrangian In-situ Global High-performance Tracking (LIGHT)

- in situ HPC Lagrangian particle tracking
 - same time step and velocity field as dycore •
 - particles communication pattern similar to lacksquaredycore
 - particles stored in flexible doubly linked lists on • each processor
- Extensible
 - housed in MPAS-O analysis member
 - particle metadata generated from registry
 - communication routines independent of metadata (flexible variable addition)

LPT cluster mixing

Each frame represents a day of simulation

Experimental design

- in situ HPC Lagrangian particle tracking via LIGHT
- Particles seeded on potential density surfaces
- Ensemble of 30 LPT realizations with diffusivity computed as mean time-rate of change of cluster dispersion tensor (covariance) from 10 - 12 days
- 4km, 8km, 16km, and 32km grids
 (30km Rossby radius is dominant scale)
- Velocity filter width of 8Δx utilized (4km - 8Δx approx. grid scale of 32' km & 32km - 8Δx approx. grid scale of 256' km)

Diffusivity vertical structure at 4 km resolution

Potential density surface (kg m⁻³)

Diffusivity dependence on model resolution

Diffusivity dependence on velocity filter scales

Western and Eastern profiles

Summary

- LPT measures high resolution fluid diffusivity
- Wide range of spatial diffusivity (10⁵ to 10² m² s⁻¹) with attenuation at depth and away from jet
- Characteristic mixing scale is 3 to 4 times first RRD, but sub-RRD scales necessary to resolve the diffusivity, e.g.,

$$\Delta x \le \frac{L_d}{4}$$

- Mixing occurs at range of spatial scales \gtrsim RRD
- Diffusivity strongly dependent on grid resolution

Questions & comments?

First Rossby deformation radius (km) in global ocean

SOMA: Rossby radius of deformation spectrum

13th International workshop on Multiscale (Un)-structured mesh numerical Modeling

for accepted shalf and slabel accepted washing

depth (m) for 1026.85 isopycnal surface

Los Alamos

