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What is the Sea Ice Outlook (SIO) 

Forecast of September sea ice extent

Organized by the Study of Environmental Arctic Change (SEARCH). Since 
2013, hosted by the Sea Ice Prediction Network - SIPN.

(arcus.org/sipn/sea-ice-outlook)

Initiated in 2008, triggered by 2007 summer record melt

Each summer, 3 submission calls - early June, early July, early August

All types of forecasting techniques welcome: dynamical models, statistical, 
heuristic, public polls.
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What is the Sea Ice Outlook (SIO) 

In this talk...

Analyze SIO dynamical models. Is there skill? Should one expect 
skill? If there’s no skill, why? What can one do to improve skill?
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Should we expect skill?

Results from perfect-model experiments, hindcasts, and studies of 
persistence timescales of sea ice say yes. 

SIO models do not even beat damped persistence forecast.

Why is skill so much lower than hindcasts? Some of the models in SIO have 
performed hindcasts over historical period, found much higher skill.

Has recent period been inherently more unpredictable than earlier 
decades?
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Should we expect skill?

Results from perfect-model experiments, hindcasts, and studies of 
persistence timescales of sea ice say yes. 

SIO models do not even beat damped persistence forecast.

Why is skill so much lower than hindcasts? Some of the models in SIO have 
performed hindcasts over historical period, found much higher skill.

Has recent period been inherently more unpredictable than earlier 
decades?

NOAA CFSV2:        hindcast RMSE (1981-2007)   0.5 -> 0.45 million km
                                   SIO RMSE (10 forecasts): 0.9 million km

METOFFICE GLOSEA5:       hindcast RMSE (1996-2009): 0.3 million km
                                                           SIO RMSE (7 forecasts): 1 million km



Sea ice persistence and predictability 
Intrinsically linked (e.g., Day et al 2014)

Persistence can vary, even in control run with no external forcing



Sea ice persistence and predictability 
Intrinsically linked (e.g., Day et al 2014)

Persistence can vary, even in control run with no external forcing

100 years index of the 2nd nonlinar Laplacian spectran analysis (NLSA) mode taken from 
a 1300 year CCSM4 control run.  Active periods of persistence & memory re-emergence 

when index is high/low (Bushuk et al, in press).



Sea ice persistence and predictability 
Intrinsically linked (e.g., Day et al 2014)

Persistence can vary, even in control run with no external forcing

Observed index of a nonlinar Laplacian spectran analysis (NLSA) mode.  Active periods 
of persistence & memory re-emergence when index is high/low (Bushuk et al, in press).



Sea ice persistence and predictability 
Intrinsically linked (e.g., Day et al 2014)

Persistence can vary, even in control run with no external forcing

Observed index of a nonlinar Laplacian spectran analysis (NLSA) mode.  Active periods 
of persistence & memory re-emergence when index is high/low (Bushuk et al, in press).



Persistence and predictability 
Intrinsically linked (e.g., Day et al 2014)

Has summer persistence changed?
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Persistence and predictability 
Intrinsically linked (e.g., Day et al 2014)

Has summer persistence changed?
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Errors in reanalysis:
Climate Forecast System Reanalysis - ICs for 

NOAA CFSv2

Courtesy Wanqiu Wang

July sea ice extent



Errors in reanalysis:
ECDA - ICs for GFDL CM2.1

Msadek et al, 2014
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Model A

Can the different models ‘predict’ each other? 
(and does it matter?)

Model C

If the SIO models predict each other better than observations -
> consistent error in ICs and physics 

t=0 t=T



Can the different models ‘predict’ each other? 
(and does it matter?)
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SIO models are about as unskilled at predicting 
each other as at predicting observations.

How different are the initial conditions they 
use?

Even if they used identical initial conditions, 
what effect would different physics have?



Errors in reanalysis (from which ICs are taken)

Courtesy Matt Chevallier

Annual volume of sea ice



Errors in reanalysis (from which ICs are taken)

Courtesy Matt Chevallier
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dynamical model groups to re-run their 2013 forecasts 
with a -1m sea ice thickness perturbation

4 groups performed experiment
NCAR CCSM4 (UW group)

PIOMAS (Zhang & Lindsay)
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GCM with ice thickness 
anomalies from PIOMAS

Regional ice-ocean model forced 
with past atmospheres

Seasonal forecasting systems
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Arctic sea ice area response

All models have their own unique response, not only in September sea ice, but 
through summer season (relevant for ice-free dates).



PIOMAS

NCAR CESM

NOAA CFSv2

Potential predictability response

The potential predictability of each model also responds differently
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Key predictor for summer sea ice extent. Day et al 2014 performed a ‘data-denial’ experiment:
control: perfect-model, experiment: identical ICs but with climatological sea ice thickness
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On sea ice thickness (and its variability)

But there is a very large spread in how models simulate sea-ice thickness variability 
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Monthly ice thickness anomalies (meters) in a model B
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One point correlation map at 88N 121E in CCSM4
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On sea ice thickness (and its variability)

Blanchard-Wrigglesworth & Bitz, 2014
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Correlation between dynamic/thermodynamic & total sea ice thickness

In CCSM4, dynamics dominate 
regional sea ice thickness variability  



Final thoughts
Dynamical models in SIO show negligible skill. The multi-model mean is only slightly 
better, and does not beat damped persistence. 

Historical hindcasts (and perfect models) show better skill.  

It is unclear why this gap occurs. It is possible that recent years have been 
inherently more unpredictable, yet summer persistence has not decreased. 

Tellingly, models are almost as unskilled at predicting each other, indicating large 
divergence in initial conditions and/or model physics.  

There is a huge spread in reanalysis of sea ice thickness (that are used by different 
groups). Additionally, SIO models respond differently to identical initial condition 
perturbations, hinting to large spread in model physics.

Huge spread across CMIP5 models in simulating sea ice thickness variability. Sea ice 
dynamics play a key role. 



Final thoughts (II)
So about that icecream... 


